Prof. Dr. Thomas Bartz-Beielstein

Dr. rer. nat.
Fakultät für Informatik und Ingenieurwissenschaften

Institut für Data Science, Engineering, and Analytics (IDE+A)

Prof. Dr. Thomas Bartz-Beielstein

Campus Gummersbach
Steinmüllerallee 1
51643 Gummersbach
Raum 1.519 Postanschrift


  • Telefon+49 2261-8196-6391

Sprechstunden

Dienstag, 11.00 bis 12.00 Uhr
Campus Gummersbach, Raum R 1.519
Steinmüllerallee 6

Funktionen

  • InstitutsdirektorIn
  • LaborleiterIn
  • ProdekanIn
  • Mitglied der Ständigen Kommission für Forschung und Wissenstransfer
  • Beauftragter für den Studienfonds Oberberg
  • Sprecher des Forschungsschwerpunkts Computational Intelligence plus (CIplus)
  • Mitglied der Ständigen Kommission zur Förderung des wissenschaftlichen Nachwuchses
  • Gründungsmitglied der Fachgruppe Digitalisierung in Wirtschaft und Gesellschaft des Graduierteninstituts NRW

Aufgabenbereiche

  • Promotionsprogramm IDE+A
  • Promotionskolloquium IDE+A

Lehrgebiete

  • Angewandte Mathematik Simulation und Optimierung IDE+A
  • Computational Intelligence Evolutionäre Algorithmen IDE+A

Forschungsgebiete

  • Künstliche Intelligenz (Artificial Intelligence)
  • Optimierung und Simulation
  • Bartz-Beielstein, Thomas (2024): Einleitung : Vom Batch Machine Learning zum Online Machine Learning. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 1 - 14. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.) (2024): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden.
  • Bartz-Beielstein, Thomas (2024): Hyperparameter Tuning. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 123 - 150. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Besondere Anforderungen an OML-Verfahren. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 67 - 73. (peer-reviewed)
  • Moritz, Steffen; Dumpert, Florian; Bartz-Beielstein, Thomas; Bartz, Eva (2024): Praxisanwendungen. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 75 - 94. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Supervised Learning : Klassifikation und Regression. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 15 - 24. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Drifterkennung und –behandlung. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 25 - 39. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Initiale Auswahl und nachträgliche Aktualisierung von OML Modellen. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 41 - 46. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Evaluation und Performance-Messung. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 47 - 66. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Open-Source-Software für Online Machine Learning. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 95 - 102. (peer-reviewed)
  • Chandrasekaran, Sowmya; Bartz-Beielstein, Thomas (2024): A Novel Ranking Scheme for the Performance Analysis of Stochastic Optimization Algorithms Using the Principles of Severity. In: De.arXiv.org. (Open Access)
  • Bartz-Beielstein, Thomas; Wellendorf, Axel; Pütz, Noah Christoph; Brandt, Jens Uwe; Hinterleitner, Alexander; Schulz, Richard; Scholz, Richard; Mersmann, Olaf; Knabe, Robin (2024): Bed-Attached Vibration Sensor System: A Machine Learning Approach for Fall Detection in Nursing Homes. In: De.arXiv.org. (Open Access)
  • Hinterleitner, Alexander; Bartz-Beielstein, Thomas; Schulz, Richard; Spengler, Sebastian; Winter, Thomas; Leitenmeier, Christoph (2024): Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution. In: De.arXiv.org. (Open Access)
  • Bartz-Beielstein, Thomas (2024): Simplifying Hyperparameter Tuning in Online Machine Learning : The spotRiverGUI. In: De.arXiv.org. (Open Access)
  • Bartz-Beielstein, Thomas; Hans, Lukas (2024): An Experimental Comparison of Batch and Online Machine Learning Algorithms. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 105 - 124. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Open-Source Software for Online Machine Learning. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 97 - 104. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Hyperparameter Tuning. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 125 - 140. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Bartz, Eva (2024): Summary and Outlook. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 141 - 143. (peer-reviewed)
  • Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.) (2024): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications).
  • Bartz-Beielstein, Thomas (2024): Special Requirements for Online Machine Learning Methods. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 63 - 69.
  • Moritz, Steffen; Dumpert, Florian; Jung, Christian; Bartz-Beielstein, Thomas; Bartz, Eva (2024): Practical Applications of Online Machine Learning. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 71 - 96. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Bartz, Eva (2024): Zusammenfassung und Ausblick. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 151 - 154. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Hans, Lukas (2024): Drift Detection and Handling. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 23 - 39. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Supervised Learning : Classification and Regression. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 13 - 22. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Introduction : From Batch to Online Machine Learning. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 1 - 11. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Initial Selection and Subsequent Updating of OML Models. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 41 - 46.
  • Bartz-Beielstein, Thomas (2024): Evaluation and Performance Measurement. In: Bartz, Eva; Bartz-Beielstein, Thomas (Hrsg.): Online Machine Learning : A Practical Guide with Examples in Python. Wiesbaden: Springer Vieweg (Machine Learning: Foundations, Methodologies, and Applications), S. 47 - 62.
  • Bartz-Beielstein, Thomas (2024): Ein experimenteller Vergleich von Batch- und Online Machine Learning-Algorithmen. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Fachmedien Wiesbaden, S. 103 - 122. (peer-reviewed)
  • Moritz, Steffen; Dumpert, Florian; Bartz-Beielstein, Thomas; Bartz, Eva (2024): Praxisanwendungen. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 69 - 87. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Ein experimenteller Vergleich von Batch- und Online-Machine-Learning-Algorithmen. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 97 - 116. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Bartz, Eva (2024): Zusammenfassung und Ausblick. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 133 - 136. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Supervised Learning : Klassifikation und Regression. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 13 - 22. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Open-Source-Software für Online Machine Learning. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 89 - 96. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Besondere Anforderungen an OML-Verfahren. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 61 - 67. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Hyperparameter-Tuning. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 117 - 132. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Evaluation und Performanzmessung. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 43 - 60. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Drifterkennung und -behandlung. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 23 - 35. (peer-reviewed)
  • Bartz-Beielstein, Thomas (2024): Initiale Auswahl und nachträgliche Aktualisierung von OML-Modellen. In: Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg, S. 37 - 42. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Bartz, Eva (Hrsg.) (2024): Online Machine Learning : Eine praxisorientierte Einführung. Wiesbaden: Springer Vieweg.
  • Dusdal, Markus; Schulz, Richard; Haag, Christoph; Bartz-Beielstein, Thomas (2023): Konviviale Künstliche Intelligenz : Definition und Entwicklung eines Vorgehensmodells. Köln: Technische Hochschule Köln (2/2023). (Open Access)
  • Chandrasekaran, Sowmya; Bartz-Beielstein, Thomas (2023): A Robust Statistical Framework for the Analysis of the Performances of Stochastic Optimization Algorithms Using the Principles of Severity. In: Applications of Evolutionary Computation: 26th European Conference, EvoApplications 2023, Held as Part of EvoStar 2023, Brno, Czech Republic, April 12–14, 2023, Proceedings. 26th International Conference on Applications of Evolutionary Computation, EvoApplications 2023, held as part of EvoStar 2023; Brno,Czech; 12.04.-14.04.2023., S. 426 - 441.
  • Bartz-Beielstein, Thomas (2023): PyTorch Hyperparameter Tuning – A Tutorial for SpotPython. In: De.arXiv.org. (Open Access)
  • Schulz, Richard; Hinterleitner, Alexander; Hans, Lukas; Subbotin, Aleksandr; Barthel, Nils; Pütz, Noah Christoph; Rosellen, Martin; Bartz-Beielstein, Thomas; Geng, Christoph; Priss, Philipp (2023): Cognitive Architecture for Artificial Intelligence : Evaluating Realworld Applicability and the Significance of Online Machine Learning. In: Proceedings - 33. Workshop Computational Intelligence : Berlin, 23.-24. November 2023. 33. Workshop Computational Intelligence; Berlin, Germany; 23.11.-24.11.2023., S. 1 - 8. (Open Access)
  • Hinterleitner, Alexander; Schulz, Richard; Hans, Lukas; Subbotin, Aleksandr; Barthel, Nils; Pütz, Noah Christoph; Rosellen, Martin; Bartz-Beielstein, Thomas; Geng, Christoph; Priss, Philipp (2023): Online Machine Learning and Surrogate-Model-Based Optimization for Improved Production Processes Using a Cognitive Architecture. In: Applied Sciences : Open Access Journal. Vol. 2023,13. (Open Access)
  • Bartz-Beielstein, Thomas (2023): Hyperparameter Tuning Cookbook : A Guide for Scikit-Learn, PyTorch, River, and SpotPython. In: De.arXiv.org. (Open Access)
  • Vodopija, Aljoša; Stork, Jörg; Bartz-Beielstein, Thomas; Filipič, Bogdan (2022): Elevator Group Control as a Constrained Multiobjective Optimization Problem. In: Applied Soft Computing : The Official Journal of the World Federation on Soft Computing (WFSC). Vol. 115. (peer-reviewed/Open Access)
  • Rehbach, Frederik; Zaefferer, Martin; Fischbach, Andreas; Rudolph, Gunter; Bartz-Beielstein, Thomas (2022): Benchmark-Driven Configuration of a Parallel Model-Based Optimization Algorithm. In: IEEE Transactions on Evolutionary Computation., S. 1 - 14. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Mersmann, Olaf; Chandrasekaran, Sowmya (2022): Ranking and Result Aggregation. In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 121 - 161. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Zaefferer, Martin (2022): Hyperparameter Tuning Approaches. In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 71 - 119. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Zaefferer, Martin (2022): Models. In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 27 - 69. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (2022): Tuning : Methodology. In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 7 - 26. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Chandrasekaran, Sowmya; Rehbach, Frederik (2022): Case Study III: Tuning of Deep Neural Networks. In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 235 - 269. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Chandrasekaran, Sowmya; Rehbach, Frederik (2022): Case Study II : Tuning of Gradient Boosting (xgboost). In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 221 - 234. (peer-reviewed/Open Access)
  • Zaefferer, Martin; Mersmann, Olaf; Bartz-Beielstein, Thomas (2022): Global Study : Influence of Tuning. In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 283 - 301. (peer-reviewed/Open Access)
  • Rebolledo, Margarita; Zeeuwe, Daan; Bartz-Beielstein, Thomas; Eiben, Agoston Endre (2022): Co-Optimizing for Task Performance and Energy Efficiency in Evolvable Robots. In: Engineering Applications of Artificial Intelligence : The International Journal of Real-Time Automation. Vol. 113. (peer-reviewed/Open Access)
  • Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.) (2022): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature. (Open Access)
  • Bartz-Beielstein, Thomas; Chandrasekaran, Sowmya; Rehbach, Frederik; Zaefferer, Martin (2022): Case Study I: Tuning Random Forest (Ranger). In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 187 - 220. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas (2022): Hyperparameter Tuning and Optimization Applications. In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 165 - 175. (peer-reviewed/Open Access)
  • Zaefferer, Martin; Chandrasekaran, Sowmya (2022): Case Study IV : Tuned Reinforcement Learning (in PYTHON). In: Bartz, Eva; Bartz-Beielstein, Thomas; Zaefferer, Martin; Mersmann, Olaf (Hrsg.): Hyperparameter Tuning for Machine and Deep Learning with R : A Practical Guide. Singapore: Springer Nature, S. 271 - 281. (Open Access)
  • Stork, Jörg; Wenzel, Philip; Landwein, Severin; Algorri, Maria Elena; Zaefferer, Martin; Kusch, Wolfgang; Staubach, Martin; Bartz-Beielstein, Thomas; Köhn, Hartmut; Dejager, Hermann; Wolf, Christian (2021): Underwater Acoustic Networks for Security Risk Assessment in Public Drinking Water Reservoirs. In: De.arXiv.org., S. 1 - 24. (Open Access)
  • Gentile, Lorenzo; Greco, Cristian; Minisci, Edmondo; Bartz-Beielstein, Thomas; Vasile, Massimiliano (2021): Stochastic Satellite Tracking with Constrained Budget via Structured-Chromosome Genetic Algorithms. In: Optimization and Engineering : International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences. (peer-reviewed/Open Access)
  • Bartz, Eva; Zaefferer, Martin; Mersmann, Olaf; Bartz-Beielstein, Thomas (2021): Experimental Investigation and Evaluation of Model-Based Hyperparameter Optimization. In: De.arXiv.org. (Open Access)
  • Bartz-Beielstein, Thomas; Dröscher, Marcel; Gür, Alpar; Hinterleitner, Alexander; Mersmann, Olaf; Peeva, Dessislava Todorova; Reese, Lennard; Rehbach, Nicolas Alexander; Rehbach, Frederik; Sen, Amrita; Subbotin, Aleksandr; Zaefferer, Martin (2021): Resource Planning for Hospitals Under Special Consideration of the COVID-19 Pandemic : Optimization and Sensitivity Analysis. In: Chicano, Francisco; Krawiec, Krzysztof (Hrsg.): GECCO '21 : Genetic and Evolutionary Computation Conference. New York: Association for Computing Machinery, S. 293 - 294. (Open Access)
  • Rebolledo, Margarita; Zeeuwe, Daan; Bartz-Beielstein, Thomas; Eiben, Agoston Endre (2021): Impact of Energy Efficiency on the Morphology and Behaviour of Evolved Robots. In: Chicano, Francisco; Krawiec, Krzysztof (Hrsg.): GECCO '21 : Genetic and Evolutionary Computation Conference. New York: Association for Computing Machinery, S. 109 - 110. (peer-reviewed/Open Access)
  • Stork, Jörg; Zaefferer, Martin; Eisler, Nils; Tichelmann, Patrick; Bartz-Beielstein, Thomas; Eiben, Agoston Endre (2021): Behavior-Based Neuroevolutionary Training in Reinforcement Learning. In: Chicano, Francisco; Krawiec, Krzysztof (Hrsg.): GECCO '21 : Genetic and Evolutionary Computation Conference. New York: Association for Computing Machinery, S. 1753 - 1761. (Open Access)
  • Strohschein, Jan; Fischbach, Andreas; Bunte, Andreas; Faeskorn-Woyke, Heide; Moriz, Natalia; Bartz-Beielstein, Thomas (2021): Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems. In: The International Journal of Advanced Manufacturing Technology. Vol. 115, S. 3513 - 3532. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Rehbach, Frederik; Rebolledo, Margarita (2021): Tuning Algorithms for Stochastic Black-Box Optimization : State of the Art and Future Perspectives. In: Pardalos, Panos M.; Rasskazova, Varvara; Vrahatis, Michael N. (Hrsg.): Black Box Optimization, Machine Learning, and No-Free Lunch Theorems. Cham: Springer (Springer Optimization and Its Applications), S. 67 - 108.
  • Bartz-Beielstein, Thomas; Dröscher, Marcel; Gür, Alpar; Hinterleitner, Alexander; Lawton, Tom; Mersmann, Olaf; Peeva, Dessislava; Reese, Lennard; Rehbach, Frederik; Rehbach, Nicolas; Sen, Amrita; Subbotin, Aleksandr; Zaefferer, Martin (2021): Optimization and Adaptation of a Resource Planning Tool for Hospitals Under Special Consideration of the COVID-19 Pandemic. 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings. Piscataway, NJ: Institute of Electrical and Electronics Engineers Inc., S. 728 - 735. (peer-reviewed)
  • Rebolledo, Margarita; Eiben, Agoston Endre; Bartz-Beielstein, Thomas (2021): Bayesian Networks for Mood Prediction Using Unobtrusive Ecological Momentary Assessments. In: Castillo, Pedro A.; Laredo, Juan Luis Jiménez (Hrsg.): Applications of Evolutionary Computation : 24th International Conference, EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings. Cham: Springer (Lecture Notes in Computer Science), S. 373 - 387. (peer-reviewed)
  • Bartz-Beielstein, Thomas; Dröscher, Marcel; Gür, Alpar; Hinterleitner, Alexander; Mersmann, Olaf; Peeva, Dessislava; Reese, Lennard; Rehbach, Nicolas; Rehbach, Frederik; Sen, Amrita; Subbotin, Aleksandr; Zaefferer, Martin (2021): Resource Planning for Hospitals under Special Consideration of the COVID-19 Pandemic: Optimization and Sensitivity Analysis. In: De.arXiv.org. (Open Access)
  • Gentile, Lorenzo; Filippi, Gianluca; Minisci, Edmondo; Bartz-Beielstein, Thomas; Vasile, Massimiliano (2020): Preliminary Spacecraft Design by Means of Structured-Chromosome Genetic Algorithms. 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, S. 2107 - 2114. (Open Access)
  • Gentile, Lorenzo; Morales, Elisa; Quagliarella, Domenico; Minisci, Edmondo; Bartz-Beielstein, Thomas; Tognaccini, Renato (2020): High-Lift Devices Topology Optimisation using Structured-Chromosome Genetic Algorithm. 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, S. 1366 - 1374. (Open Access)
  • Rebolledo Coy, Margarita Alejandra; Chandrasekaran, Sowmya; Bartz-Beielstein, Thomas (2020): Sensor Placement for Contamination Detection in Water Distribution Systems. In: De.arXiv.org. (Open Access)
  • Fischbach, Andreas; Strohschein, Jan; Bunte, Andreas; Stork, Jörg; Faeskorn-Woyke, Heide; Moriz, Natalia; Bartz-Beielstein, Thomas (2020): CAAI - A Cognitive Architecture to Introduce Artificial Intelligence in Cyber-Physical Production Systems. In: De.arXiv.org. (Open Access)
  • Fischbach, Andreas; Strohschein, Jan; Bunte, Andreas; Stork, Jörg; Faeskorn-Woyke, Heide; Moriz, Natalia; Bartz-Beielstein, Thomas (2020): CAAI - A Cognitive Architecture to Introduce Artificial Intelligence in Cyber-Physical Production Systems(1/2020). (Open Access)
  • Bartz, Eva; Zaefferer, Martin; Katagiri, Takeshi; Bartz-Beielstein, Thomas (2020): Architektur und Transport: Seillose, lineare Aufzüge und Künstliche Intelligenz. In: Transforming Cities : Urbane Systeme im Wandel. Vol. 2, S. 10 - 12.
  • Rehbach, Frederik; Zaefferer, Martin; Naujoks, Boris; Bartz-Beielstein, Thomas (2020): Expected Improvement versus Predicted Value in Surrogate-Based Optimization. In: De.arXiv.org. (Open Access)
  • Rebolledo Coy, Margarita Alejandra; Stoean, Ruxandra; Eiben, A. E.; Bartz-Beielstein, Thomas (2020): Hybrid Variable Selection and Support Vector Regression for Gas Sensor Optimization. In: Filipič, Bogdan; Minisci, Edmondo; Vasile, Massimiliano (Hrsg.): Bioinspired Optimization Methods and Their Applications : Proceedings. Cham: Springer International Publishing (Lecture Notes in Computer Science), S. 281 - 293. (peer-reviewed)
  • Stork, Jörg; Eiben, A. E.; Bartz-Beielstein, Thomas (2020): A New Taxonomy of Global Optimization Algorithms. In: Natural Computing. Vol. 21, S. 219 - 242. (Open Access)
  • Stork, Jörg; Zaefferer, Martin; Bartz-Beielstein, Thomas; Eiben, A. E. (2020): Understanding the Behavior of Reinforcement Learning Agents. In: Filipič, Bogdan; Minisci, Edmondo; Vasile, Massimiliano (Hrsg.): Bioinspired Optimization Methods and Their Applications : Proceedings. Cham: Springer International Publishing (Lecture Notes in Computer Science), S. 148 - 160. (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Zaefferer, Martin (2020): Big Data is often just Bad Data. In: Digital Xchange 2020; Bergisches Rheinland, Germany; 06.06.2020.
  • Bartz-Beielstein, Thomas; Rehbach, Frederik; Mersmann, Olaf; Bartz, Eva (2020): Hospital Capacity Planning Using Discrete Event Simulation Under Special Consideration of the COVID-19 Pandemic. In: De.arXiv.org. (Open Access)
  • Peetz, Tom; Vogt, Sebastian; Zaefferer, Martin; Bartz-Beielstein, Thomas (2020): Simulation of an Elevator Group Control Using Generative Adversarial Networks and Related AI Tools. In: De.arXiv.org. (Open Access)
  • Rehbach, Frederik; Gentile, Lorenzo; Bartz-Beielstein, Thomas (2020): Variable Reduction for Surrogate-Based Optimization. Köln: Technische Hochschule Köln (5/2020). (peer-reviewed/Open Access)
  • Rehbach, Frederik; Gentile, Lorenzo; Bartz-Beielstein, Thomas (2020): Variable Reduction for Surrogate-Based Optimization. GECCO '20 : Proceedings of the 2020 Genetic and Evolutionary Computation Conference. New York: Association for Computing Machinery (GECCO '20), S. 1177 - 1185.
  • Rehbach, Frederik; Zaefferer, Martin; Naujoks, Boris; Bartz-Beielstein, Thomas (2020): Expected Improvement versus Predicted Value in Surrogate-Based Optimization. Köln: Technische Hochschule Köln (4/2020). (peer-reviewed/Open Access)
  • Rehbach, Frederik; Zaefferer, Martin; Naujoks, Boris; Bartz-Beielstein, Thomas (2020): Expected Improvement versus Predicted Value in Surrogate-Based Optimization. GECCO '20 : Proceedings of the 2020 Genetic and Evolutionary Computation Conference. New York: Association for Computing Machinery (GECCO '20), S. 868 - 876. (peer-reviewed/Open Access)
  • Rehbach, Frederik; Gentile, Lorenzo; Bartz-Beielstein, Thomas (2020): Feature Selection for Surrogate Model-Based Optimization. Köln: Technische Hochschule Köln (03/2020). (peer-reviewed/Open Access)
  • Rebolledo Coy, Margarita Alejandra; Rehbach, Frederik; Eiben, Agoston Endre; Bartz-Beielstein, Thomas (2020): Parallelized Bayesian Optimization for Expensive Robot Controller Evolution. In: Bäck, Thomas; Preuss, Mike; Deutz, André; Wang, Hao; Doerr, Carola; Emmerich, Michael; Trautmann, Heike (Hrsg.): Parallel Problem Solving from Nature - PPSN XVI : Proceedings, Part I. Cham: Springer (Lecture Notes in Computer Science), S. 243 - 256.
  • Rebolledo Coy, Margarita Alejandra; Rehbach, Frederik; Eiben, Agoston Endre; Bartz-Beielstein, Thomas (2020): Parallelized Bayesian Optimization for Problems with Expensive Evaluation Functions. GECCO '20 : Proceedings of the 2020 Genetic and Evolutionary Computation Conference. New York: Association for Computing Machinery (GECCO '20), S. 231 - 232.
  • Bartz-Beielstein, Thomas; Bartz, Eva; Rehbach, Frederik; Mersmann, Olaf (2020): Optimization of High-dimensional Simulation Models Using Synthetic Data. In: De.arXiv.org. (Open Access)
  • Bartz-Beielstein, Thomas; Doerr, Carola; Bossek, Jakob; Chandrasekaran, Sowmya; Eftimov, Tome; Fischbach, Andreas; Kerschke, Pascal; Lopez-Ibanez, Manuel; Malan, Katherine M.; Moore, Jason H.; Naujoks, Boris; Orzechowski, Patryk; Volz, Vanessa; Wagner, Markus; Weise, Thomas (2020): Benchmarking in Optimization : Best Practice and Open Issues. Köln: Technische Hochschule Köln (2/2020). (peer-reviewed/Open Access)
  • Bartz, Eva; Bartz-Beielstein, Thomas; Rehbach, Frederik; Mersmann, Olaf; Mühlenhaus, Ralf; Schmallenbach, Ralf; Leisner, Sarah; Hahn, Nikola; Ortlieb, Friedhelm; Elvermann, Kaija (2020): Einsatz künstlicher Intelligenz in der Bedarfsplanung im Gesundheitswesen, hier in der Bedarfsplanung von Intensivbetten im Pandemiefall. Abstractbuch zum 20. Kongress der Deutschen Interdisziplinären Vereinigung für Intensiv- und Notfallmedizin e.V. Wissen schafft Vertrauen. Berlin: DIVI e.V., S. 99 - 100. (Open Access)
  • Chandrasekaran, Sowmya; Rebolledo Coy, Margarita Alejandra; Bartz-Beielstein, Thomas (2020): EventDetectR – An Open-Source Event Detection System. Köln: Technische Hochschule Köln (9/2020). (peer-reviewed/Open Access)
  • Rebolledo Coy, Margarita Alejandra; Chandrasekaran, Sowmya; Bartz-Beielstein, Thomas (2020): Sensor Placement for Contamination Detection in Water Distribution Systems. Köln: Technische Hochschule Köln (10/2020). (peer-reviewed/Open Access)
  • Strohschein, Jan; Fischbach, Andreas; Bunte, Andreas; Faeskorn-Woyke, Heide; Moriz, Natalia; Bartz-Beielstein, Thomas (2020): Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems. In: De.arXiv.org. (Open Access)
  • Rebolledo Coy, Margarita Alejandra; Chandrasekaran, Sowmya; Bartz-Beielstein, Thomas (2020): Technical Report: Flushing Strategies in Drinking Water Systems. Köln: Technische Hochschule Köln (11/2020). (peer-reviewed/Open Access)
  • Bartz-Beielstein, Thomas; Doerr, Carola; van der Berg, Daan; Bossek, Jakob; Chandrasekaran, Sowmya; Eftimov, Tome; Fischbach, Andreas; Kerschke, Pascal; Lopez-Ibanez, Manuel; Malan, Katherine M.; Moore, Jason H.; Naujoks, Boris; Orzechowski, Patryk; Volz, Vanessa; Wagner, Markus; Weise, Thomas (2020): Benchmarking in Optimization : Best Practice and Open Issues. In: De.arXiv.org. (Open Access)
  • Forschungspreis der TH Köln 2020
    Prof. Dr. Thomas Bartz-Beielstein, Professor für Angewandte Mathematik an der Fakultät für Informatik und Ingenieurwissenschaften erhält den mit 10.000 Euro dotierten Forschungspreis. Er forscht im Bereich der Computational Intelligence, einem Teilgebiet der Künstlichen Intelligenz. Sein Schwerpunkt sind evolutionäre Algorithmen zur Modellierung, Simulation und Optimierung von Prozessen, beispielweise in den Bereichen Industrie 4.0 und Big Data. Seit 2014 wurden von ihm zehn Forschungsprojekte mit hohem Praxisbezug durchgeführt, beispielsweise Projekte zur Trinkwasserversorgung und Datensouveränität sowie deren Auswirkungen auf die Gesellschaft. Bartz-Beielstein ist Mitbegründer und Mitglied des Forschungsschwerpunks Computational Intelligence plus sowie Direktor des interdisziplinärem Instituts für Data Science, Engineering, and Analytics, an dem aktuell 14 kooperative Promotionen durchgeführt werden. „Professor Bartz-Beielstein legt mit seiner Bewerbung für den ersten Forschungspreis der TH Köln die Messlatte hoch“, so die Jury in ihrer Begründung. „Seine beeindruckenden Forschungsleistungen im Bereich der Computational Intelligence manifestieren sich in ca. 50 Publikationen und hohen Drittmitteleinnahmen alleine innerhalb der letzten fünf Jahre. Sein Engagement für den wissenschaftlichen Nachwuchs, regelmäßige Gutachtertätigkeiten sowie maßgebliche Impulse zur Profilbildung der TH Köln weit über den Campus Gummersbach hinweg runden das Bild ab. Ein mehr als würdiger Kandidat.“
    Erster Tag der Forschung

M
M