GECCO 2020 Industrial Challenge:

Optimizing Expensive Computational Fluid
Dynamics Simulations

Frederik Rehbach, Margarita Rebolledo, Thomas Bartz-Beielstein

1
January, 2020

The goal of the GECCO 2020 Industrial Challenge is to develop an
optimizer for this year’s industrial application in a programming
language of your choice. The optimizer has to efficiently use every
objective function evaluation as each evaluation involves a computa-
tionally intensive fluid dynamics simulation. As usual, the task from
this industrial challenge stems directly from ongoing cooperation
with industry.

The challenge is split into two tracks. In the first track, the amount
of allowed objective function evaluations is only limited by the com-
puting power you are willing to invest on your own machine. In the
second track, only 100 evaluations are allowed per optimization run.
In both cases, the algorithm with the best-found objective function
value wins.

This document provides a set of rules and regulations for the
GECCO IC, a detailed problem description, as well as contact and
submission information.

1 Introduction

THE GoaL of the GECCO 2020 Industrial Challenge is to develop
an optimization algorithm for the Gas Distribution System (GDS)
of an Electrostatic Precipitator (ESP). The Electrostatic Precipita-
tor Problem stems from a corporation with Steinmiiller Babcock
Environment GmbH. It was first published to GECCO in >.

The ESP Problem is a 49-dimensional discrete-valued problem.
Each objective function evaluation involves the automatic setup
of a new Computational Fluid Dynamics (CFD) simulation, run-
ning that given simulation, and measuring the final obtained gas
distribution in the precipitator.

The aim of the challenge was to allow for an open optimization
process. The competitors are allowed to use any programming
language and optimization technique of their choice.

HicHLIGHTS of the GECCO IC include:

¢ Interesting Problem Domain: Reduction of emissions and envi-

ronmental pollution is more important than ever before. Efficient
filters help reduce global CO2 emissions.

® Real-world Problems: Test your algorithms and methods, directly

on a real industry problem.

* Easy Access: Easily Participate through our online platform, no
installations required.

* Cologne University of Applied Sci-
ences, 51643 Gummersbach, Germany
frederik.rehbach@th-koeln.de,
thomas.bartz-beielstein@th-koeln.de

Technology
Arts Sciences

TH Koln

2 Frederik Rehbach, Martin Za-

efferer, Jorg Stork, and Thomas
Bartz-Beielstein. Comparison of
parallel surrogate-assisted optimiza-
tion approaches. In Proceedings

of the Genetic and Evolutionary
Computation Conference on - GECCO
'18. ACM Press, 2018

2 F. REHBACH, M. REBOLLEDO, T. BARTZ-BEIELSTEIN

e Fair Submission Assessment: Winners are determined automat-

ically through our online portal, fully objectively, only based on
the final result quality.

* Publication Options: Participants can submit a 2-page extended

abstract describing the algorithm they are applying in the chal-
lenge. Accepted abstracts are published together with GECCO
poster-papers in the GECCO-companion.

The remainder of this document specifies the information needed
to take part in this competition. Section 2 gives more detail about
the ESP as well as the CFD-Test-Problem-Suite it is implemented
in. Section 3 summarizes how to participate in the challenge and
which rules have to be followed.

2 Problem Description

2.1 The Electrostatic Precipitator Problem

The ESP is one of the main components of gas cleaning systems.
They are used in large scale combustion power plants or other
industries where solid particles have to be removed from a gas
stream. ESPs are large devices with dimensions of around 3om x
3om X 50m, resulting in multiple millions of euros just in building
cost. The main task of an ESP is to separate and extract particles
from exhaust gases in order to reduce environmental pollution.
Figure 1 illustrates this system.

Figure 1: Electrostatic precipitator
with 3 separation zones. This figure
was kindly provided by Steinmiiller
Babcock Environment GmbH.

inlet hood

gas distribution
system (GDS)

collecting
electrodes

flue gas inlet

discharge

electrodes
hopper

baffle plates

s . dust hopper
flow distribution PP

measurement pIane

In the flue gas inlet hood of an ESP, a gas distribution system
(GDS) (shown in Figure 2) is required to control and guide the gas
flow through separation zones in which particles are removed from
the exhaust gases. If no GDS is used, or if the system is configured

GECCO 2020 INDUSTRIAL CHALLENGE 3

poorly, the fast inlet gas stream will rush through the separation
zones of the ESP. This results in very low separation efficiencies.
In case of a well configured GDS, the inflowing gas is nicely dis-
tributed across the whole surface of the separation zones, resulting
in high efficiency.

Hence, the efficient operation of an ESP requires an optimal
configuration of the GDS. The GDS in our example consists of
49 configurable slots. Each of these slots can be configured with
baffles, as well as blocking and perforated plates. Baffles are metal
plates which are mounted at an angle to the general gas flow. They
are used to redirect a gas stream into a new direction. Blocking
plates completely block a gas stream. Perforated plates are used to
slow down and only partially block gas streams. They are created
by punching a grid of holes into metal plates. Smaller holes lead to
higher pressure drops and thus a slower gas stream. Larger holes
allow for a nearly free gas flow. These plates can be mounted into
each of the 49 configurable slots. Optionally, some slots can also be
left empty.

of the slots can be configured with eight different types of plates
(integer value o0-7), including leaving the slot empty. The vast
amount of possible combinations of the GDS reveals a complex
discrete optimization problem. For a single evaluation of a given
configuration, a computationally expensive CFD simulation is nec-
essary, which results in hours of computation time. Unfortunately,
such large computation times make the ESP problem unsuitable
for a large number of tests runs which are necessary to derive rea-
sonable conclusions about the performance of several compet-
ing algorithms. Therefore, a second model with a largely reduced
amount of cells in the simulation mesh was created. By doing so,
the runtime of the model was reduced to roughly one minute per
evaluation. This speed up comes at the cost of reduced simulation
accuracy. However, the reduced model still captures most of the dif-
ficulties and complex features of the actual problem, while enabling
a detailed experimental study. Reproducing the rugged problem
landscape is much more important than the actual accuracy of each
sample point. The open source CFD framework OpenFOAM 3 was
used to implement our simulations. The original landscape of a
real industrial problem is transferred into a function which can be
evaluated in reasonable computation time.

2.2 CFD Test Problem Suite

The CFD-Test-Problem-Suite was presented in last year’s GECCO
Hot of the Press talk by Daniels et al. 4. The suite consists of ex-
pensive computer simulation-based optimization problems and
provides an easy evaluation interface that will be used for the setup
of our challenge.

For the purpose of this challenge, the suite was enhanced with
a Docker version. Docker is an open-source tool that provides a

Figure 2: Visualization of a gas distri-
bution system (GDS) mounted in the
inlet hood of of an ESP. This figure
was kindly provided by Steinmiiller
Babcock Environment GmbH.

3 Henry G Weller, G Tabor, Hrvoje
Jasak, and C Fureby. A tensorial
approach to computational continuum
mechanics using object-oriented
techniques. Computers in physics, 12
(6):620-631, 1998

4Steven] Daniels, Alma AM Rahat,
Richard M Everson, Gavin R Ta-
bor, and Jonathan E Fieldsend. A
suite of computationally expensive
shape optimisation problems using
computational fluid dynamics. In
International Conference on Parallel
Problem Solving from Nature, pages
296-307. Springer, 2018

4 F. REHBACH, M. REBOLLEDO, T. BARTZ-BEIELSTEIN

Linux container-based operating system-level virtualization. 5 5 Carl Boettiger. An introduction
to docker for reproducible research.

. . . . ACM SIGOPS Operating Systems
lows for packaging code or experiments into a shareable container Review, 29(1)771~79, 2015

Docker is easily installed on any major operating system. It al-

image. An image typically contains all required software and pre-
requisites to run a certain task. Such an image can then be shared
and is ready for immediate execution on other machines.

An explanation of how to run the dockerized ESP problem
through the test suite is available at: https:/ /bitbucket.org/arahat/cfd-
test-problem-suite/src/master/.

3 How to Participate

There are two tracks in this competition. Competitors can partici-
pate in both tracks, but can also just choose one of them.

Track 1: Unlimited Evaluations

In track one the amount of objective function evaluations is only
limited by how much computation time you are willing to give to
the optimizer on your machine. In order to participate, you have to
follow the Docker instructions presented at: https:/ /bitbucket.org/arahat/cfd-
test-problem-suite/. Scroll all the way down, for now you ONLY
need section "Setup via Docker". You DO NOT need to install
OpenFOAM or any of the described prequisites! Only the described
Docker installation is required to run the ESP problem on your
machine. Currently, there are only Python and R examples of how
to run the ESP Problem through docker given. However, any pro-
gramming language that can access the command line on your
machine should be capable of using the easy interface.

An evaluation of the ESP problem as given in the online example
will look something like this (take care, this command should be on
one single line!):

docker run —rm frehbach/cfd—test—problem—suite ./dockerCall.sh ESP
“1,1,0,1,0,0,0,0,0,4,3,4,6,6,5,6,7,7,6,2,4,7,2,0,4,0,0,1,6,0,0,3,6,7,2,6,7,0,4,1,6,7,2,7,0,4,4,2,7"

Once you have setup the evaluation interface on your machine,
you can try to use any optimizer of your choice to find the lowest
objective function value on the ESP problem. Example scripts for
that are also available on the bitbucket link, in the folder "Dock-
erExampleScripts".

GECCO 2020 INDUSTRIAL CHALLENGE 5

Listing 1: ‘example.py’: sample Python code that creates a random
candidate solution and evaluates it on the ESP problem.

import subprocess
import random

evalFun accepts a vector of integers,
length 49 (dimensionality of the ESP problem)
def evalFun (problemName, candidateSolution):
evalCommand = "docker run —irm
frehbach/cfd—test—problem—suite ./dockerCall.sh "
+ problemName + " "
parsedCandidate = ",".join ([str(x) for x in
candidateSolution])
return (subprocess.check_output(evalCommand +
parsedCandidate + "’", shell=True))

"o

+

Create some candidate

candidate = [random.randint(o,7) for i in range(49)]

Evaluate the candidate , for example on the ESP problem:
print (evalFun ("ESP", candidate))

Participation is then very easy: You can send your best candidate
setup (the 49 integers) along with your measured objective function
value to "gecco@gm.fh-koeln.de", mail-subject "GECCO-IC-2020".
Each candidate that we receive will be checked at the end of the
competition, and the winners will be determined according to the
objective function value that we measure.

Finalists selected by the organizers will be invited to present
their submission at the competition session, held during the GECCO
conference. The winner of the competition will be announced at the
SIGEVO meeting ceremony, on July 12, 2020.

Track 2: Severely Limited Evaluations

For the second track, you do not have to install any additional

software on your machine. Submissions will be handled through an

automated online evaluation tool. You can access the tool via:
http://owos.gm.fh-koeln.de:3838/GECCO-IC-2020/

The entrance password to the tool is 'IC2020". After entering the
page you will have to create an account on the registration page.
Please remember your password as we have NO mechanisms for
resetting a forgotten password! Once you created an account, you
can start uploading your submissions as often as you like. The
submissions and scores will be saved on our servers.

A submission to the online tool will consist of multiple files
(You have to mark all your files simultaneously after you pressed
the "browse" button). Each upload has to contain one file called
"main.sh". The evaluation tool will search for this exact file name
and try to run it for your evaluation.

The dockerized environment that your code will be run in con-
tains installations for python 2 & 3 as wells as R. If you want to use
other programming languages or install other prerequisites for your
optimizers you can do so. You are in a simplified Ubuntu environ-
ment. Therefore, commands like "apt-get install" etc. can be used

http://owos.gm.fh-koeln.de:3838/GECCO-IC-2020/

6 F. REHBACH, M. REBOLLEDO, T. BARTZ-BEIELSTEIN

to add additional software. In the container you are the root user,
so using the sudo command is not required. You have to specify
each of your prerequisite installation steps as well as lastly the call
to your optimizers source code in the "main.sh".

In the following we give a short example of how to setup a very
simple optimizer that tries a few random candidates in python.
These codes and other examples are included in the ExampleScripts
folder of the ressource package. In order to try the base example
online, upload both the "main.sh" and "optimRandomSearch.py"
to the webpage. After some time (press refresh from time to time),
you will see the evaluation result.

Since python is already installed in the docker container, our
"main.sh” only contains a single line:

Listing 2: Code inside example ‘'main.sh’. The script is automati-
cally started on the evaluation server and runs our optimizer.

python optimRandomSearch.py

Listing 3: ‘optimRandomSearch.py’: sample Python code that cre-
ates random candidate solutions and evaluates them on the ESP
problem.

import subprocess
import random

evalFun accepts a vector of integers,
length 49 (dimensionality of the ESP problem)
def evalFun(candidateSolution):
evalCommand = "./evaluate.sh "
parsedCandidate = ",".join ([str(x) for x in
candidateSolution])
return (subprocess.check_output(evalCommand + +
parsedCandidate + "’", shell=True))

non

for i in range(5):
Generate a bunch of random candidate solutions
candidate = [random.randint(o,7) for i in range(49)]
Evaluate the candidates
evalFun (candidate)

Listing 3 presents a python example code that can be uploaded
to the online submission tool. Similar to the requirements in track
1, the ESP problem is called via the command line. The objective
function "evalFun" accepts a vector with 49 integers and passes
the, via the command line to ‘evaluate.sh’. This same approach has
to be used in any other programming language too. ‘evaluate.sh’
accepts a comma seperated string of intergers e.g. "5,1,2,0,...", eval-
uates the candidate and returns the objective function value. Your
script / optimizer does not have to return anything. The best eval-
uated candidate is automatically stored on the server and returned
as your result.

Each uploaded algorithm should only use 100 evaluations and
can not use information gained from previous runs. In order to
ensure this, the online platform applies each uploaded algorithm to

GECCO 2020 INDUSTRIAL CHALLENGE 7

a newly created randomized instance of the ESP problem. Since the
original task was to optimize the gas distribution in the inlet section
of the precipitator, for each run a new target distribution is defined.
This means that even if you upload an algorithm that runs with the
same seed, your results will vary from upload to upload since the
algorithm will face a new harder or easier instance every time. For
the final evaluation of the winner one more final instance will be
used for every participant to keep the comparison fair. The LAST
UPLOADED algorithm of each participant will be applied to that
instance. The algorithm with the single best-found candidate wins.

Finalists selected by the organizers will be invited to present
their submission at the competition session, held during the GECCO
conference. The winner of the competition will be announced at the
SIGEVO meeting ceremony, on July 12, 2020. While highly appre-
ciated, it is not required for the participants of the challenge to also
participate in the GECCO conference.

3.1 Organizing Committee

If you have questions, feel free to reach out to us at "gecco@gm.fh-
koeln.de" , or personally:

e Frederik Rehbach, TH Kdln - frederik.rehbach@th-koeln.de
e Margarita Rebolledo, TH KoIn - margarita.rebolledo@th-koeln.de

e Thomas Bartz-Beielstein, TH Koln - thomas.bartz-beielstein@th-
koeln.de

List of References

Carl Boettiger. An introduction to docker for reproducible re-
search. ACM SIGOPS Operating Systems Review, 49(1):71-79,
2015.

Steven J Daniels, Alma AM Rahat, Richard M Everson, Gavin R
Tabor, and Jonathan E Fieldsend. A suite of computationally
expensive shape optimisation problems using computational
fluid dynamics. In International Conference on Parallel Problem

Solving from Nature, pages 296—307. Springer, 2018.

Frederik Rehbach, Martin Zaefferer, Jorg Stork, and Thomas Bartz-
Beielstein. Comparison of parallel surrogate-assisted optimization
approaches. In Proceedings of the Genetic and Evolutionary
Computation Conference on - GECCO '18. ACM Press, 2018.

Henry G Weller, G Tabor, Hrvoje Jasak, and C Fureby. A tensorial
approach to computational continuum mechanics using object-
oriented techniques. Computers in physics, 12(6):620-631, 1998.

	Introduction
	Problem Description
	How to Participate

