Prof. Dr. Michael Frantzen
Studiengangleitung

Ulrike Sagorski
Studiengangkoordination
T: +49 221-8275-2347
F: +49 221-8275-2319
ulrike.sagorski@th-koeln.de
Raum ZW3-27
Betzdorfer Straße 2
50679 Köln

Technische Hochschule Köln
Postanschrift:
Gustav-Heinemann-Ufer 54
50968 Köln

Sitz des Präsidiums:
Claudiusstraße 1
50678 Köln

www.th-koeln.de
Inhalt

1 Study Objectives ... 4
2 Curriculum .. 5
3 Lernergebnisse der Module / Modulziele .. 6
4 Kompetenzstufen ... 7
5 Description of Modules ... 8

Advanced Body Engineering and Lightweight Design .. 9
Vehicle Concepts and Integration .. 10
Vehicle Dynamics and Automotive Chassis .. 11
Vehicle Electronics and Communication .. 12
Advanced Combustion Engines .. 13
FEA in Body Engineering .. 14
NVH Systems Engineering ... 15
Advanced Vehicle Safety .. 16
Numerical Methods in Engineering Sciences .. 17
Advanced Materials .. 18
Advanced Thermodynamics .. 19
Control System Design ... 20
Modelling of Multi-Body Systems .. 21
Optimal Control and Estimation ... 22
Statistical Optimization .. 23
Structural Durability ... 24
Vehicle Dynamics Simulation .. 25
Automotive Manufacturing Processes .. 26
Corporate Management ... 27
Digital Factory .. 28
Legal Requirements and Homologation .. 29
Sustainability ... 30
Engineering Ethics ... 31
Automotive Supply Chain Management .. 32
Leadership Application ... 34
Component Design, Materials and Manufacture ... 36
Virtual Reality .. 38
Cost-Efficient Product Design .. 39
Driver Assistance Systems .. 40
Mobility Concepts ... 41
Technology of Material Flow & Robotics .. 42
Scientific Seminar / Advanced Technical English .. 43
Master Thesis ... 44
1 Study Objectives

The master programme Automotive Engineering prepares its graduates for management positions in the areas of research and development within the automotive industry. The students deepen their knowledge in fundamentals of automotive engineering and in application of their skills on a high scientific level. In addition, they will attain background knowledge and interdisciplinary expertise to analyze, steer and improve complex engineering processes of the automotive industry. The graduates will acquire the competence, which qualifies them to accompany the complete value chain from research, conception through development and manufacture. The students will be enabled to both lead project teams and be an effective team member themselves. They will have learnt to have an effective and goal-oriented approach to problems and to work independently even on new subject matters with demanding challenges in the areas of vehicle development. In addition, the master degree lays the foundation for further scientific qualification in the form of doctoral theses. It also qualifies the graduates for employment in the German public sector on the level of higher civil service positions (Höherer Dienst).
2 Curriculum

<table>
<thead>
<tr>
<th>Semester</th>
<th>SoSe</th>
<th>WiSe</th>
<th>SoSe/WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Points</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Advanced Automotive Engineering

<table>
<thead>
<tr>
<th>Modul</th>
<th>SoSe</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adv. Body Engineering and Lightweight Design</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Vehicle Concepts and Integration</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Vehicle Dynamics and Automotive Chassis</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Vehicle Electronics and Communication</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Electives (1 to be selected)

<table>
<thead>
<tr>
<th>Modul</th>
<th>SoSe</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adv. Combustion Engines</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>FEA in Body Engineering</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>NVH Systems Engineering</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Adv. Vehicle Safety</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Advanced Scientific Methods

<table>
<thead>
<tr>
<th>Modul</th>
<th>SoSe</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerical Methods</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Adv. Materials - Selection and Life Cycle Assessment</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Electives (2 to be selected)

<table>
<thead>
<tr>
<th>Modul</th>
<th>SoSe</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adv. Thermodynamics</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Control System Design</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Modelling of Multi-Body Systems</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Optimal Control and Estimation</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Statistical Optimization</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Structural Durability</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Vehicle Dynamics Simulation</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

General and Engineering Courses (2 to be selected)

<table>
<thead>
<tr>
<th>Modul</th>
<th>SoSe</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automotive Manufacturing Processes</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Corporate Management</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Digital Factory</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Legal Requirements and Homologation</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Engineering Ethics</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Automotive Supply Chain Management</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Scientific and Interdisciplinary Seminars (1 to be selected)

<table>
<thead>
<tr>
<th>Modul</th>
<th>SoSe</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership Application</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Component Design, Materials and Manufacture</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Virtual Reality</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Cost-Efficient Product Design</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Driver Assistance Systems</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mobility Concepts</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Technology of Material Flow and Robotics</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Master Thesis

<table>
<thead>
<tr>
<th>Modul</th>
<th>SoSe</th>
<th>WiSe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Colloquium</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Ein „x“ kennzeichnet das Semester, in dem das Modul angeboten wird.
3 Lernergebnisse der Module / Modulziele

Den Lernergebnissen sowie Lernzielen (learning outcome) ist in den Modulbeschreibungen des Studiengangs ein Klassifikationsschema zugeordnet. Dieses orientiert sich im Kern an der Taxonomie von Lernzielen im kognitiven Bereich nach BLOOM\(^1\). Es stehen Lernziele wie Denken, Wissen und Problemlösen im Vordergrund.

Die Lernziele werden nach BLOOM\(^1\) in sechs Kompetenzstufen (K1 bis K6) hierarchisch kategorisiert, wobei nach SITTE\(^2\) jede niedrigere Kategorie jeweils ein Element der höheren ist. Die Kompetenzstufen können durch gezielte Verwendung von Verben, wie z.B. nach MEYER\(^3\) in den Modulbeschreibungen formuliert und damit manifestiert werden.

<table>
<thead>
<tr>
<th>Kompetenzstufe</th>
<th>Begriff</th>
<th>Beispiel (Verben)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K1 Wissen</td>
<td>Wiedergabe von Wissen, Begriffen, Definitionen, Verfahren, Zusammenhängen, etc.</td>
<td>kennen, beschreiben, darstellen, berichten, benennen</td>
</tr>
<tr>
<td>K2 Verstehen</td>
<td>Wissen mit eigenen Worten sinnerhaltend umformen und in eigenen Worten wiedergeben können</td>
<td>interpretieren, definieren, formulieren, ableiten</td>
</tr>
<tr>
<td>K3 Anwendung</td>
<td>In konkreten Situationen Regeln, Methoden oder Berechnungsverfahren anwenden können</td>
<td>durchführen, berechnen, planen, gestalten, erarbeiten</td>
</tr>
<tr>
<td>K4 Analyse</td>
<td>Problemstellungen in Elemente zerlegen können, um dann anhand eines Vergleiches, Prinzipien, Strukturen sowie Gemeinsamkeiten oder Widersprüche herausarbeiten zu können</td>
<td>auswählen, einteilen, untersuchen, vergleichen, analysieren</td>
</tr>
<tr>
<td>K5 Synthese</td>
<td>Einzelne Elemente zu einem Ganzen, Neuen zusammenfügen</td>
<td>entwerfen, zuordnen, konzipieren, konstruieren, entwickeln</td>
</tr>
<tr>
<td>K6 Beurteilen</td>
<td>Abgabe eines bewertenden Urteils</td>
<td>beurteilen, entscheiden, begründen, bewerten, klassifizieren</td>
</tr>
</tbody>
</table>

\(^1\) BLOOM, B. S. Taxonomie von Lernzielen im kognitiven Bereich, Beltz Verlag, Weinheim, 1976

\(^2\) SITTE, W. & WOHLSLÄGL, H. Beiträge zur Didaktik des „Geographie und Wirtschaftskunde“-Unterrichts. (=Materialien zur Didaktik der Geographie und Wirtschaftskunde, Bd. 16), Wien, 2004

\(^3\) MEYER, R. http://www.arbowis.ch/material/lp/Lehren/Zielformulierung_Verben.pdf, Stand Juli 2012
4 Kompetenzstufen

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Kompetenzstufen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced BodyEngineering and Lightweight Design</td>
<td>K1</td>
</tr>
<tr>
<td>Vehicle Concepts and Integration</td>
<td>K2</td>
</tr>
<tr>
<td>Vehicle Dynamics and Automotive Chassis</td>
<td>K3</td>
</tr>
<tr>
<td>Vehicle Electronics and Communication</td>
<td>K4</td>
</tr>
<tr>
<td>Advanced Combustion Engines</td>
<td>K5</td>
</tr>
<tr>
<td>FEA in Body Engineering</td>
<td>K6</td>
</tr>
<tr>
<td>NVH Systems Engineering</td>
<td></td>
</tr>
<tr>
<td>Advanced Vehicle Safety</td>
<td></td>
</tr>
<tr>
<td>Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>Advanced Materials - Selection and Life Cycle Assessment</td>
<td></td>
</tr>
<tr>
<td>Advanced Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>Control System Design</td>
<td></td>
</tr>
<tr>
<td>Modelling of Multi-Body Systems</td>
<td></td>
</tr>
<tr>
<td>Optimal Control and Estimation</td>
<td></td>
</tr>
<tr>
<td>Statistical Optimization</td>
<td></td>
</tr>
<tr>
<td>Structural Durability</td>
<td></td>
</tr>
<tr>
<td>Vehicle Dynamics Simulation</td>
<td></td>
</tr>
<tr>
<td>Automotive Manufacturing Processes</td>
<td></td>
</tr>
<tr>
<td>Corporate Management</td>
<td></td>
</tr>
<tr>
<td>Digital Factory</td>
<td></td>
</tr>
<tr>
<td>Legal Requirements and Homologation</td>
<td></td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
</tr>
<tr>
<td>Engineering Ethics</td>
<td></td>
</tr>
<tr>
<td>Automotive Supply Chain Management</td>
<td></td>
</tr>
<tr>
<td>Leadership Application</td>
<td></td>
</tr>
<tr>
<td>Component Design, Materials and Manufacture</td>
<td></td>
</tr>
<tr>
<td>Vehicle Dynamics Simulation</td>
<td></td>
</tr>
<tr>
<td>Virtual Reality</td>
<td></td>
</tr>
<tr>
<td>Cost-Efficient Product Design</td>
<td></td>
</tr>
<tr>
<td>Driver Assistance Systems</td>
<td></td>
</tr>
<tr>
<td>Mobility Concepts</td>
<td></td>
</tr>
<tr>
<td>Technology of Material Flow and Robotics</td>
<td></td>
</tr>
<tr>
<td>Master Thesis</td>
<td></td>
</tr>
</tbody>
</table>
5 Description of Modules
Description of Modules

<table>
<thead>
<tr>
<th>Technology</th>
<th>Arts Sciences</th>
<th>Advanced Body Engineering and Lightweight Design</th>
<th>ABE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 1. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Frank Herrmann</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Frank Herrmann</td>
</tr>
</tbody>
</table>

Content
- Lightweight design of vehicle structures
- Properties and applications of metals and fibre reinforced plastics for automotive structures
- Advanced mechanics focusing on failure criteria and modes
- Structural analysis (FEM) in vehicle structure development

Learning Outcome
- The students are able to
 - carry out basic engineering designs of vehicle lightweight structures,
 - compare and evaluate design solutions for vehicle structures regarding lightweight design, material application and mechanical properties,
 - analyse and interpret structural analysis (FEM) results,
 - apply specific knowledge of advanced body materials and mechanical methods within the development process of vehicle structures.

Teaching Methods
- Literature based self studies of advanced materials and mechanics
- Lectures with integrated exercises

Practical Laboratory Work
- -

Language
- Teaching: German
- Teaching material: English/German

Examination
- Written examination (90 min)

Prerequisites
- TH Köln, BEng Fahrzeugtechnik, Lecture Karosserie or adequate knowledge in Body Engineering

Recommended Literature
- Braess/Seiffert: Handbuch der Kraftfahrzeugtechnik
- Grabner/Nothhaft: Konstruieren von Pkw-Karosserien
- Dubbel: Taschenbuch für den Maschinenbau
- Kessel, Fröhling: Technische Mechanik
- Chakrabarty: Applied Plasticity
- Ostermann: Anwendungstechnologie Aluminium
- Schürmann: Konstruieren mit Faser-Kunststoff-Verbünden

An updated list of literature will be given in the lectures.

Workload
- Pre-module preparation: 12 h
- Teaching lessons (5 SWS): 80 h
- Self studies: 48 h
- Preparation for examination: 40 h
- In total: 180 h
Vehicle Concepts and Integration (VCI)

Credits: 6

Designated Degree: Master of Science Automotive Engineering, 1. Semester

Lecturer: Prof. Dr.-Ing. Michael Frantzen

Responsible: Prof. Dr.-Ing. Michael Frantzen

Content:
- Introduction to vehicle concepts
- History of vehicle building, challenges for new vehicle concepts
- Introduction to vehicle design, ergonomics & package
- Interaction between drive train variants, body and chassis (Integration)
- Innovation management, research, development processes
- Limits of mobility, the (auto-) mobile future

Learning Outcome:
The students are able to
- sketch,
- basically design and layout,
- classify,
- judge and select new types of vehicles in line with customer wants and market needs.

This will be taught problem based, in a simulated project environment and with the help of innovation-, research- and project management-tools, in combination with team work and individual tasks.

The students justify, defend, advertise and champion their ideas of new vehicle concepts for future demands and continued improvements of sustainable mobility concepts for a changing world and society, by a detailed presentation of the research and design process outcome, together with a convincing marketing concept.

In the final documentation the above mentioned is documented, illustrated and filed, comparing existing vehicle concepts to the proposed concepts in terms of day-by-day usability, sustainability, propulsion engine, chassis- and body-concepts and expected costs, based on the proposed usage.

Teaching Methods:
- Lectures with problem based integrated exercises (ProfiL²)
- Presentations from industry and academic partners
- Project work in small teams, homework, practical seminar work
- Simulation of development systems and processes
- Practical work, excursions and presentations (incl. e.g. “elevator pitch”)

Practical Laboratory Work: -

Language:
- Teaching: German
- Teaching material and some exercise: English

Examination:
Active participation in seminary work, project work, project documentation, excursions and presentation of project outcome (individually and in teams)

Prerequisites: No specific requirements

Recommended Literature:
- Braess/Seifert: Vieweg Handbuch Kraftfahrzeugtechnik (Vieweg)
- Bosch: Kraftfahrtechnisches Handbuch (Vieweg+Teubner)

Workload:

<table>
<thead>
<tr>
<th>Workload Description</th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons:</td>
<td>48 h</td>
<td>32 h</td>
<td>16 h</td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>72 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test report:</td>
<td>24 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>36 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>180 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description of Modules

Vehicle Dynamics and Automotive Chassis (VDAC)

Credits 6

Designated Degree Master of Science Automotive Engineering, 1. Semester

Lecturer Prof. Dr.-Ing. Jürgen W. Betzler

Responsible Prof. Dr.-Ing. Jürgen W. Betzler

Content Methods to describe and evaluate vehicle motions; Identification of driver-oriented, function-based and legal demands on vehicle dynamics, suspension subsystems and components with respect to longitudinal dynamics (braking).

Learning Outcome The students are able to

- define and describe driver-oriented demands on performance of vehicle, key suspension subsystems and components,
- analyze practical brake system problems and develop solutions,
- compare, conclude and judge developed technical solutions based on driver and legal demands.

Teaching Methods
- Lectures (including external experts)
- Seminars given by student teams including discussions
 Team based and problem focused development of solutions

Practical Laboratory Work Using rigs to measure the properties of vehicle/suspension systems and doing an analysis of their behavior.

Language
- Teaching: German (summary: English)
- Teaching material: German/English

Examination Written examination (90 min), presentations and project documentation

Prerequisites Vehicle dynamics, basics of automotive chassis

Recommended Literature

Haken, K.-L., Grundlagen der Kraftfahrzeugtechnik, München, Carl Hanser Verlag, 4. Aufl. 2015
Add. literature and legal regulations specified in the lectures.

Workload

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons incl.</td>
<td>104</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>self studies, presentations:</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test report:</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>180</td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
Description of Modules

Vehicle Electronics and Communication (VEC)

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 1. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Toni Viscido, Prof. Dr.-Ing. Ulf-Marko Gundlach</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Toni Viscido, Prof. Dr.-Ing. Ulf-Marko Gundlach</td>
</tr>
</tbody>
</table>
| Content | • Electronic systems in vehicles
 | • Automotive data technology
 | • X-by-wire systems
 | • Bus-systems
 | • EMV/EMS
 | • Electrical power supply
 | • Electronic drives and hybrid systems |
| Learning Outcome | The students are able to
 | • describe automotive electronic control systems with respect to state of the art,
 | • identify future trends,
 | • explain possible limits and failures behaviour of electronic components. |
| Teaching Methods | • Lectures
 | • Seminars |
| Practical Laboratory Work| Electrical power control, power generators, CAN-bus functionality, bus behaviour, controller/memory behaviour |
| Language | German/English |
| Examination | Written examination |
| Prerequisites | Fundamental knowledge of vehicle electrics, physics, combustion engines, vehicle dynamics and automotive chassis, numerical methods in engineering sciences, mechatronic system for automotive applications |
 | Reif, K.: Batterien, Bordnetze und Vernetzung. Vieweg und Teubner, 2010 |
| Workload | Teaching lessons: 90 h
 | Preparation for courses: 60 h
 | and examination: 90 h
 | In total: 180 h |
Description of Modules

Advanced Combustion Engines (ACE)

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Kai-Uwe Münch</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Kai-Uwe Münch</td>
</tr>
</tbody>
</table>

Content
- Supercharging of engines (turbocharging, resonance charging, variable length intake manifolds, compressors)
- Downsizing
- Exhaust emissions and emission control systems (forces inside the engine, mass balancing)
- Engine torque
- Torque fluctuations (rotational vibrations)
- Hybridization of the power train

Learning Outcome
The students are able to
- describe and discriminate the several systems of supercharging in function and basic knowledge,
- describe and explain the coherences and technology of the piston engine including using the theoretical background,
- explain and analyse the gas- and mass forces of the engine,
- analyse and understand of hybridization advantages of the Power train,
- learn about alternative Fuels and sources (illustrate the methods of mass balancing, design a mass balancing, explain and analyse torque fluctuations and its influence to the power train).

Teaching Methods
- Lecture
- Exercises
- Presentation
- (Practical training on engines in small groups)

Practical Laboratory Work
Measurement of in-cylinder pressure versus crank-angle and calculation of torque and engine speed fluctuations

Language
- Teaching: German
- Teaching material: English

Examination
Written examination (120 min)

Prerequisites
Physics, chemistry, thermodynamics, mathematics, statics, dynamics, material science, electrical engineering, vehicle driving mechanics

Recommended Literature
- Internal Combustion Engine Handbook, SAE
- SAE technical Papers for up-to-date publications

Workload

<p>| Teaching lessons: | 54 h |
| Self studies: | 46 h |
| Preparation for examination: | 20 h |
| In total: | 120 h |</p>
<table>
<thead>
<tr>
<th>Description of Modules</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Arts Sciences</td>
</tr>
<tr>
<td>TH Köln</td>
<td>FEA in Body Engineering</td>
</tr>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Frank Herrmann</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Language</td>
<td>Teaching: German</td>
</tr>
<tr>
<td></td>
<td>Teaching material: English/German</td>
</tr>
<tr>
<td>Practical Laboratory Work</td>
<td>Application of FEM code Abaqus at the computer lab of the faculty</td>
</tr>
<tr>
<td>Examination</td>
<td>Written examination, FEM problem to be solved on the computer (270 min)</td>
</tr>
<tr>
<td>Recommended Literature</td>
<td>Abaqus documentation</td>
</tr>
<tr>
<td></td>
<td>Abaqus tutorial</td>
</tr>
<tr>
<td></td>
<td>Script TH Köln, BEng Fahrzeugtechnik, Vorlesung FEM Leichtbau</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>TH Köln, BEng Fahrzeugtechnik, Lecture FEM Leichtbau</td>
</tr>
<tr>
<td>Workload</td>
<td>Teaching lessons (3 SWS): 4 h</td>
</tr>
<tr>
<td></td>
<td>Computer lab (3 SWS): 44 h</td>
</tr>
<tr>
<td></td>
<td>Self studies at Computer lab: 48 h</td>
</tr>
<tr>
<td></td>
<td>Preparation for examination: 40 h</td>
</tr>
<tr>
<td></td>
<td>In total: 120 h</td>
</tr>
</tbody>
</table>

Content
- Nonlinearities in FEM: material plasticity, nonlinear geometry and contact
- Crush and crash of vehicle substructures
- Quasistatic implicit FEM
- Dynamic explicit FEM
- Material failure criteria and structural failure modes

Learning Outcome
The students are able to
- understand metal plasticity and behaviour of vehicle structures beyond material yielding and
- apply nonlinear FEM to typical crush and crash problems of automotive structures.

Teaching Methods
Lectures with computer exercises

Teaching Material
- Teaching: German
- Teaching material: English/German
| **Credits** | 4 |
| **Designated Degree** | Master of Science Automotive Engineering, 2. Semester |
| **Lecturer** | Prof. Dr.-Ing. Axel Faßbender, Prof. Dr.-Ing. Rainer Haas |
| **Responsible** | Prof. Dr.-Ing. Axel Faßbender, Prof. Dr.-Ing. Rainer Haas |

Content
- Advanced mechanical vibrations
- Advanced acoustics
- Advanced signal analysis
- Hydraulics
- Computer-based tools in NVH development

Learning Outcome
- The students are able to apply state-of-the-art process-oriented methodologies and tools in NVH development,
- Are able to explain the scientific basics of mechanical vibrations, acoustics, signal analysis and hydraulic components and systems,
- Are able to explain and apply the NVH peculiarities of computer-based tools like FEM, multibody, digital signal acquisition/analysis and hydraulic simulations,
- Are capable to apply this knowledge to automotive applications.

Teaching Methods
- Lecture with focus on NVH basics (75% - mechanics, acoustics, signal analysis) and hydraulic in automotive systems (25%)
- Case-study based project work with special focus e.g. on hydraulic applications or other state-of-the-art topics
- Use of e-learning system for distribution of course material and actual lecture notes

Practical Laboratory Work
- Project work

Language
- Teaching: German
- Teaching materials: English
- Software: English

Examination
- Project work with documentation (60%)
- Presentation and colloquium (40%)

Prerequisites
- Knowledge in "Fahrzeugschwingungen und -akustik" and "Grundlagenkenntnisse Hydraulik" (see Bachelor Fahrzeugtechnik) as recommendation

Recommended Literature
- Further Literature see detailed reference list in script.

Workload

<table>
<thead>
<tr>
<th>Activity</th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons:</td>
<td>32</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Self studies:</td>
<td>88</td>
<td>16</td>
<td>88</td>
</tr>
<tr>
<td>In total:</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>

Credits:

- **Designated Degree:** Master of Science Automotive Engineering, 2. Semester
- **Lecturer:** Prof. Dr.-Ing. Axel Faßbender, Prof. Dr.-Ing. Rainer Haas
- **Responsible:** Prof. Dr.-Ing. Axel Faßbender, Prof. Dr.-Ing. Rainer Haas

Content
- Advanced mechanical vibrations
- Advanced acoustics
- Advanced signal analysis
- Hydraulics
- Computer-based tools in NVH development

Learning Outcome
- The students are able to apply state-of-the-art process-oriented methodologies and tools in NVH development,
- Are able to explain the scientific basics of mechanical vibrations, acoustics, signal analysis and hydraulic components and systems,
- Are able to explain and apply the NVH peculiarities of computer-based tools like FEM, multibody, digital signal acquisition/analysis and hydraulic simulations,
- Are capable to apply this knowledge to automotive applications.

Teaching Methods
- Lecture with focus on NVH basics (75% - mechanics, acoustics, signal analysis) and hydraulic in automotive systems (25%)
- Case-study based project work with special focus e.g. on hydraulic applications or other state-of-the-art topics
- Use of e-learning system for distribution of course material and actual lecture notes

Practical Laboratory Work
- Project work

Language
- Teaching: German
- Teaching materials: English
- Software: English

Examination
- Project work with documentation (60%)
- Presentation and colloquium (40%)

Prerequisites
- Knowledge in "Fahrzeugschwingungen und -akustik" and "Grundlagenkenntnisse Hydraulik" (see Bachelor Fahrzeugtechnik) as recommendation

Recommended Literature
- Further Literature see detailed reference list in script.

Workload

<table>
<thead>
<tr>
<th>Activity</th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons:</td>
<td>32</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Self studies:</td>
<td>88</td>
<td>16</td>
<td>88</td>
</tr>
<tr>
<td>In total:</td>
<td></td>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
Advanced Vehicle Safety (AVS)

Credits
- 4

Designated Degree
- Master of Science Automotive Engineering, 2. Semester

Lecturer
- Prof. Dr.-Ing. Toni Viscido

Responsible
- Prof. Dr.-Ing. Toni Viscido

Content
- Principles of road and vehicle safety
- Vehicle safety systems and crashworthiness
- Active and passive safety
- Crash modes and structural design requirements
- Crash investigation, driver behavior and safety

Learning Outcome
- The students are able to
 - describe requirements to modern car design concerning safety,
 - understand the critical issues concerning active and passive safety protection,
 - understand the engineering solutions to protect humans inside and outside the vehicle in the event of a crash.

Teaching Methods
- Lectures
- Exercises

Practical Laboratory Work
-

Language
- Teaching: German
- Teaching materials: German/English

Examination
- Written examination

Prerequisites
- Fundamental knowledge about car design and automotive engineering

Recommended Literature
- Literature will be recommended relating to the individual subjects.

Workload

<table>
<thead>
<tr>
<th>Teaching lessons:</th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 h</td>
<td></td>
<td>32 h</td>
<td>16 h</td>
</tr>
</tbody>
</table>

| Self studies and preparation for examination: | 72 h |

| In total: | 120 h |
Description of Modules

<table>
<thead>
<tr>
<th>Technology</th>
<th>Arts Sciences</th>
<th>TH Köln</th>
<th>Numerical Methods in Engineering Sciences</th>
<th>NM</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Designated Degree</th>
<th>Master of Science Automotive Engineering, 1. Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lecturer</th>
<th>Prof. Dr. rer. nat. Georg Engelmann</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. rer. nat. Georg Engelmann</th>
</tr>
</thead>
</table>

Content

- Principles and methods of the main fields of scientific computing:
 - e.g. solution of linear systems
 - eigenvalue problems
 - singular value decomposition
 - interpolation, quadrature
 - solution of initial value problems

Learning Outcome

- The students are able to
 - describe and explain the main numerical methods used in engineering sciences,
 - judge the performance and limitations of these methods,
 - choose and apply these methods correctly,
 - write Matlab® programs to perform numerical tasks in engineering sciences,
 - describe and explain the algorithms for the main numerical methods implemented in Matlab®.

Teaching Methods

- Seminaristic lectures
- Self studies to work out certain topics of the course
- Exercises and practical training

Practical Laboratory Work

-

Language

- Teaching: German
- Teaching material: English

Examination

- Written examination

Prerequisites

- Good knowledge in linear algebra and analysis.
- Good programming skills in Matlab®.

Recommended Literature

 (Further literature will be given during the course.)

Workload

- **Teaching lessons (5 SWS):** 70 h
- **Self studies:** 70 h
 (including preparation for the exercises and practical trainings)
- **Preparation for examination:** 40 h
- **In total:** 180 h
Description of Modules

Credits
- **6**

Designated Degree
- Master of Science Automotive Engineering, 1. Semester

Lecturer
- Prof. Dr.-Ing. Peter Krug, Prof. Dr. rer. nat. Johannes Stollenwerk

Responsible
- Prof. Dr.-Ing. Peter Krug

Content
- Advanced materials and manufacturing technologies with emphasis on automotive applications:
 - material science
 - materials selection methods
 - light weight design
 - primary production of materials
 - sensor materials
 - surface engineering
 - production processes of components
 - process analysis
 - sustainability
 - carbon footprint
 - life cycle assessment

Learning Outcome
- The students are able to
 - explain and apply the physical, material and manufacturing aspects of modern materials,
 - describe aspects of recycling and ecological auditing,
 - explain and distinguish between surface engineering technologies to improve material properties and durability,
 - illustrate and compare modern production processes,
 - analyze complex requirement sets and to develop solution concepts,
 - evolve material-related strategies for typical management issues,
 - critically assess external strategies,
 - practice team work for evolving strategies
 - conduct complete life cycle assessment on specific, complex automotive components.

Teaching Methods
- Lectures and invited speakers from industry
- Home exercises (micro projects)
- Discussion (plenum or individual)
- Student’s presentations
- Excursion

Practical Laboratory Work
- Demonstration of material processing in different labs.

Language
- English/German lecture notes and slides, German/English language

Examination
- Written examination, oral presentation and colloquium

Prerequisites
- Basics in material science, manufacturing technologies and economics.
- Fundamentals in automotive engineering.

Recommended Literature
- Cebon, D; Ashby, M.: Case studies in Materials Selection; Butterworth 1996

Workload
- **Teaching lessons (5 SWS):** 90 h
- **Pre- and afterwork:** 45h
- **Preparation for examination:** 45 h
- **In total:** 180 h
Advanced Thermodynamics

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Kai-Uwe Münch</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Kai-Uwe Münch</td>
</tr>
</tbody>
</table>

Content
- Unsteady heat transfer
- Humid air and air conditioning
- Introduction in technical combustion (main focus on reciprocating engine combustion):
 - Fuel atomization, mixture formation, ignition, premixed and diffusion combustion,
 - Emission generation mechanism

Learning Outcome
- The students are able to
 - Explain the fundamentals in technical combustion, humid air and air conditioning,
 - Describe and explain convective heat transfer,
 - Describe and explain unsteady heat transfer phenomena.

Teaching Methods
- Lectures
- Exercise courses

Practical Laboratory Work
-

Language
- Teaching: German
- Teaching materials: English / German

Examination
- Written examination (60 min)

Prerequisites
- Higher mathematics, basic lectures thermodynamics and fluid dynamics

Recommended Literature

Workload

<table>
<thead>
<tr>
<th>Teaching lessons:</th>
<th>60 h</th>
<th>40 h</th>
<th>20 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incl. Self studies:</td>
<td>30 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>72 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>180 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description of Modules

Credits

| Credits | 4 |

Designated Degree

| Designated Degree | Master of Science Automotive Engineering, 2. Semester |

Lecturer

| Lecturer | Prof. Dr.-Ing. Hermann Henrichfreise |

Responsible

| Responsible | Prof. Dr.-Ing. Hermann Henrichfreise |

Content

- Classical control for linear systems:
 - Assessment of stability in the frequency domain, poles and zeros in the closed control loop, demands on control systems, choice of the control structure, methods for determination of controller parameters, enhanced control structures
- Introduction to linear state-space control for single input/output systems:
 - Full state vector feedback regulator, regulator design by pole placement, controllability, reference- and disturbance-feedforward, state observer, duality of regulator and observer design, observability, disturbance estimation, separation principle

Learning Outcome

The students are able to
- describe and explain demands on and methods to design linear control systems in the Laplace and time domain,
- perform classical and state space control design for single input/output systems,
- classify and take advantage of different controller structures,
- independently continue their education using further literature.

Teaching Methods

- Seminaristic lectures
- Demonstration and explanation of programming examples
- Self-studies to work out certain topics of the course

Practical Laboratory Work

-

Language

- Teaching: German
- Teaching material: lecture notes in German, programming examples in English

Examination

Oral or written examination

Prerequisites

Basic knowledge of control engineering

Recommended Literature

- Further Literature see also the literature list at the lecture notes.

Workload

<table>
<thead>
<tr>
<th>Workload</th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons (4SWS):</td>
<td>60 h</td>
<td>30 h</td>
<td>15 h</td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>30 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>30 h</td>
<td>30 h</td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Hermann Henrichfreise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Hermann Henrichfreise</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content
- 3-dimensional multi-body systems:
 - kinematics, kinetics (Newton-Euler and Lagrange formalism)
 - nonlinear equations of motion
 - linearization
 - nonlinear and linear state-space representation
 - coupling with actuators
 - model analysis for linear equations of motion (response to initial conditions and stimuli, eigenvalues, eigenvectors, mode shapes, modal transformation of the equations of motion)

Learning Outcome
- The students are able to
 - describe, explain and apply formalisms for modelling of multi-body systems and their numerical implementation,
 - augment the models with electric and hydraulic actuators,
 - analyse linear multi-body system models by means of response, eigenvalues, eigenmodes,
 - independently continue their education using further literature.

Teaching Methods
- Seminaristic lectures
- Demonstration and explanation of programming examples
- Self-studies to work out certain topics of the course

Practical Laboratory Work
-

Language
- Teaching: German
- Teaching material: lecture notes in German, programming examples in English

Examination
- Oral or written examination

Prerequisites
- Basic knowledge in kinematics and kinetics,
- Good programming skills in Matlab®

Recommended Literature
- Further Literature see also the literature list at the lecture notes.

Workload

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons (4SWS):</td>
<td>60 h</td>
<td>30 h</td>
<td>15 h</td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>30 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>30 h</td>
<td>30 h</td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optimal Control and Estimation

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Hermann Henrichfreise</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Hermann Henrichfreise</td>
</tr>
</tbody>
</table>

Content
- Linear, quadratic, Gaussian (LQG) state-space control:
 - Fundamentals of the analysis of stochastic signals
 - Linear quadratic regulator (LQR) design
 - Linear quadratic estimator (LQE) design
 - Plant model augmentations for reference- and disturbance feedforward and disturbance estimation
 - Robust implementation by loop transfer recovery (LTR)
 - Tool-supported design and implementation of an optimal state-space control for an electromechanical positioning system

Learning Outcome
- The students are able to
 - Apply advanced knowledge of state-space control systems with reference- and disturbance-feedforward,
 - Describe, explain and apply the design of optimal linear state-space control systems by means of optimizing quadratic cost functions for deterministic and stochastic stimuli,
 - Describe, explain and apply an approach for robust implementation,
 - Independently continue their education using further literature.

Teaching Methods
- Seminaristic lectures
- Demonstration and explanation of programming examples
- Self-studies to work out certain topics of the course
- Demonstration of application examples with laboratory test rigs

Practical Laboratory Work

Language
- Teaching: German
- Teaching material: lecture notes in German, programming examples in English

Examination
- Oral or written examination

Prerequisites
- Good knowledge of the lecture control system design,
- Good knowledge in linear algebra and analysis

Recommended Literature

Further Literature
- See also the literature list at the lecture notes.

Workload

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons (4SWS):</td>
<td>60 h</td>
<td>30 h</td>
<td>15 h</td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>30 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>30 h</td>
<td></td>
<td>30 h</td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr. rer.nat.habil. Rainer Lenz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr. rer.nat.habil. Rainer Lenz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content
Principles and methods of the main fields of Statistical Optimization:
- e.g. Probability and statistics
- optimization methods
- workflow optimization
- selected application examples
- robust optimization
- optimization examples from the automotive engineering

Learning Outcome
The students are able to
- describe and explain the main methods of combinatorial optimization used in engineering sciences,
- judge the performance and limitations of these methods,
- choose and apply appropriate methods and/or approximation heuristics associated with their algorithmic representation,
- write programs within the R environment in order to perform elaborated statistical analysis.

Teaching Methods
- Seminaristic lectures
- Self studies to work out certain topics of the course
- Exercises and practical training

Practical Laboratory Work
-

Language
- Teaching: German
- Teaching material: English

Examination
- Written examination

Prerequisites
Good knowledge in linear algebra, analysis and descriptive statistics.
Basic programming skills

Recommended Literature
E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, INC., Asia, 2011
A. Koop: Lineare Optimierung, Spektrum – Akad. Verlag, Berlin 2008
P. Ruge: Das Ingenieurwissen: Mathematik und Statistik, Springer Verlag Berlin Heidelberg, 2014

Workload
- Teaching lessons: 60 h
- self studies (including preparation for the exercises and practical trainings): 30 h
- Preparation for examination: 30 h
- In total: 120 h
Description of Modules

Structural Durability (SD)

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Peter Krug</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Peter Krug</td>
</tr>
</tbody>
</table>

Content
- Fatigue in different materials
- Structural durability
- Failure mechanisms
- Technical failures
- Fracture mechanics
- Influencing factors on strength and fracture behavior
- Influence of tribology, corrosion and impact I on component’s lifetime

Learning Outcome
The students are able to
- Explain different methods to improve structural durability,
- Critically assess complex mechanical or environmental loadings of components and their impact on component’s failure,
- Describe and explain the influencing factors on strength and fracture behavior,
- Examine the durability of different materials and/or different treated material,
- Identify failure mechanisms and predict components’ lifetime,
- Analyze, compare and improve given material and design with respect to durability demands,
- Read, to analyze and to draw right conclusions from journal papers on structural durability and component’s failure.

Teaching Methods
- Lectures
- Exercises
- Laboratory work
- Reading and discussion of relevant journal papers (plenum or individual)
- Oral presentation by students

Practical Laboratory Work
- Applying different methods to improve endurance limit
- Applying different testing methods to check effectiveness

Language
English lecture notes and slides, English language

Examination
Colloquium, oral presentation and written examination

Prerequisites
Materials science, mathematics, mechanical design, requirements and boundary conditions of automotive components in service

Recommended Literature
- Cebon, D.; Ashby, M.: Case studies in Materials Selection; Butterworth 1996

Workload
- Teaching lessons+ laboratory work: 60 h
- Pre- and afterwork: 30 h
- Preparation for examination: 30 h
- In total: 120 h
Description of Modules

Vehicle Dynamics Simulation (VDS)

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Jürgen W. Betzler</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Jürgen W. Betzler</td>
</tr>
</tbody>
</table>

Content

Using CAE-tools to simulate the kinematics of suspension systems and of the vehicle motion. The project results will be documented in a written report and presented by the students.

Learning Outcome

The students are able to
- define driver oriented demands on the performance of suspension systems and vehicles,
- analyze the properties of the suspension system and of the vehicle dynamics performance,
- identify problems and develop solutions,
- compare, conclude and judge developed technical solutions based on driver requirements.

Teaching Methods

- Seminars
- Team based problem focused development of solutions

Practical Laboratory Work

-

Language

- Teaching: German (summary: English)
- Teaching material: German/English

Examination

Presentation, team report, written examination

Prerequisites

Vehicle dynamics, basics of automotive chassis, basics of CAE tools

Recommended Literature

- Haken, K.-L.: Grundlagen der Kraftfahrzeugtechnik, München, Carl Hanser Verlag, 4. Aufl. 2015
- Add. literature and legal regulations specified in the lectures.

Workload

- Teaching lessons incl. project work: 64 h
- Team report: 36 h
- Preparation for examination: 20 h
- In total: 120 h
Automotive Manufacturing Processes (AMP)

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Christoph Hartl</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Christoph Hartl</td>
</tr>
<tr>
<td>Content</td>
<td>Fundamentals and applications of manufacturing technologies and process chains used for manufacturing and processing of metallic and non-metallic materials (plastic components, technical glass, ceramics), and composite materials related to automotive production.</td>
</tr>
</tbody>
</table>
| Learning Outcome | The students are able to
- evaluate suitable manufacturing methods and process chains for an industrial production of automotive components,
- analyse the feasibility of manufacturing methods and process chains,
- compare product costs, processing time and product quality of different production methods. |
| Teaching Methods | Lectures
Exercises |
| Practical Laboratory Work |
- |
| Language | Teaching: German/English
Teaching material: English |
| Examination | Written examination |
| Prerequisites | Knowledge in material sciences, engineering mechanics, physics and mathematics |
(Further literature will be recommended relating to the individual subjects.) |
| Workload |
| Teaching lessons: | 48 h | L | 32 h | E | 16 h |
| Preparation for courses and examination: | 72 h |
| In total: | 120 h |
Content
General Strategic Management:
- Process of leadership and executive function
- Corporate strategy of OEM / international aspects of automotive business / marketing Management / management tools:
 - make -or-buy, flexibility, cots, business and operating models

Learning Outcome
The students are able to
- analyse specialities of strategic basics in automotive business,
- arrange the different strategic approach of international acting enterprises with fundamentals of marketing management,
- comply the techniques for analyzing industries and competitors,
- combine aspects for questioning to leadership,
- know how to synthesize strategic management situation.

Teaching Methods
- Lectures
- Exercises
- Project work / case studies
- Discussion (individual)

Practical Laboratory Work
-

Language
- Teaching: German
- Teaching material: English

Examination
Written examination (120 min)
Successful participation to project is precondition for examination.

Prerequisites
Basics in Economics and Marketing

Recommended Literature
- Clarke: Automotive Production Systems and Standardisation, Physika Verlag, 2005
- Heneric: Europe’s Automobile Industry on the move, Physika Verlag, 2005

Workload

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons (3 SWS)</td>
<td>72 h</td>
</tr>
<tr>
<td>Pre- and afterwork</td>
<td>24 h</td>
</tr>
<tr>
<td>Preparation for examination</td>
<td>24 h</td>
</tr>
<tr>
<td>In total</td>
<td>120 h</td>
</tr>
</tbody>
</table>
Description of Modules

Credits
| 4 |

Designated Degree
Master of Science Automotive Engineering, 2. Semester

Lecturer
Prof. Dr.-Ing. Ralf Breede

Responsible
Prof. Dr.-Ing. Ralf Breede

Content
Methods and tools for digital planning and continuous optimization of industrial production environments with an emphasis on automotive production processes in terms of a digital factory.

Learning Outcome
The students are able to
- explain the fundamentals of a Digital Factory,
- understand and use methods and tools for digital process planning,
- illustrate and compare industrial production processes,
- describe and discuss modelling and simulation techniques
- analyze complex planning situations to develop solution concepts.

Teaching Methods
- Lectures
- Exercises

Practical Laboratory Work
Practical examples of manufacturing processes using 3D-Simulation tools

Language
- Teaching: German
- Teaching material: English

Examination
Written examination

Prerequisites
- Knowledge of production processes and techniques, production organization, manufacturing principles and automation
- Fundamentals of 3D-CAD/CAE-systems

Recommended Literature
 Further literature will be recommended relating to the subject within the lectures.

Workload
- Teaching lessons: **60 h**
- Pre- and afterwork: **30 h**
- Test report: **30 h**
- In total: **120 h**
Content
The module is focused on processes, boundary conditions and regulations which have to be considered to certify the roadworthy of vehicles on global market. Selected country-specific standards and regulations which impact vehicle homologation will be highlighted.

Learning Outcome
The students are able to
- understand the basic core issues in global vehicle homologation,
- identify specific problem definitions related to the module content,
- practise specialisation.

Teaching Methods
- Lectures
- Exercises and case studies

Practical Laboratory Work
-

Language
- Teaching: German
- Teaching material: German

Examination
Written examination

Prerequisites
No specific requirements

Recommended Literature
Literature will be recommended relating to the individual subjects.

Workload
<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons:</td>
<td>48 h</td>
</tr>
<tr>
<td>Preparation for courses and examination:</td>
<td>72 h</td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
</tr>
<tr>
<td>Content</td>
<td>• Environmental issues within product development</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>• Detection of environmental requirements with the aid of scenario procedures</td>
</tr>
<tr>
<td></td>
<td>• Analysis and evaluation of technologies from environmental perspective</td>
</tr>
<tr>
<td></td>
<td>• Environmental innovations and trends in automotive engineering</td>
</tr>
<tr>
<td>Learning Outcome</td>
<td>The students are able to</td>
</tr>
<tr>
<td></td>
<td>• identify environmental issues in product design and manufacture for automotive components,</td>
</tr>
<tr>
<td></td>
<td>• apply scenario procedures to detect environmental requirements in component design and development,</td>
</tr>
<tr>
<td></td>
<td>• analyse and evaluate manufacturing technologies concerning their environmental impact,</td>
</tr>
<tr>
<td></td>
<td>• describe environmental innovations and trends in automotive engineering.</td>
</tr>
</tbody>
</table>

Teaching Methods
- Lectures
- Exercises

Practical Laboratory Work
-

Language
- Teaching: German
- Teaching material: German/English

Examination
- Written examination

Prerequisites
- No specific requirements

Recommended Literature
- Literature will be recommended relating to the individual subjects.

Workload

<table>
<thead>
<tr>
<th>Teaching lessons:</th>
<th>48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation for courses and examination::</td>
<td>72 h</td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
</tr>
</tbody>
</table>
Description of Modules

Engineering Ethics (EE)

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Dr. Hubertus Zilkens</td>
</tr>
<tr>
<td>Responsible</td>
<td>Dr. Hubertus Zilkens</td>
</tr>
</tbody>
</table>

Content
- Definition of the Terms Technology, Economy and Ethics – transdependency of the different disciplines
- History of the European sense of technological progress (we may as we can vs. we can what we may)
- Transfer of the classical cardinal virtues and vices to the industrial and business routines
- Ethics, social behavior and corporate social responsibility – the model of the Honorable Businessman
- Ethics and eligibility diagnostics (which ethical dispositions and cultural attributes should I earn to successfully obtain leading positions in a company)

Learning Outcome
The students are able to
- have deep knowledge about the historical progress of morals and values,
- recognize the effects of their technical opus and can estimate the impact concerning society and sustainability,
- enjoy an extensive transdisciplinary education in the fields of ethics and history,
- gain orientation regarding their personal character traits and can align themselves in a social and individual sense of ethics,
- are able to practically apply their knowledge, e.g. in the field of leadership and business,
- add an extensive humanistic education to their technical competences.

Teaching Methods
Lecture, interactive discussions and short presentations from the students

Practical Laboratory Work
-

Language
German

Examination
Written examination (120 min)

Prerequisites
-

Recommended Literature
To be given during lectures.

Workload

<table>
<thead>
<tr>
<th>Description</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons</td>
<td>64 h</td>
</tr>
<tr>
<td>Pre- and afterwork</td>
<td>36 h</td>
</tr>
<tr>
<td>Preparation for examination</td>
<td>20 h</td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
</tr>
</tbody>
</table>
Automotive Supply Chain Management

Description of Modules

<table>
<thead>
<tr>
<th>TH Köln</th>
<th>Automotive Supply Chain Management</th>
<th>ASCM</th>
</tr>
</thead>
</table>

Credits
4

Designated Degree
Master of Science Automotive Engineering, 1. Semester

Lecturer
Prof. Dr. rer. pol. Helmut Schulte Herbrüggen

Responsible
Prof. Dr. rer. pol. Helmut Schulte Herbrüggen

Content
- Basics and definitions of Automotive Supply Chain Management Systems
- Goals and Strategies of Automotive Supply Chain Management Systems
- SCOR (Supply Chain Operations Reference) – Model
- Analysis and Design focussing on LEAN Automotive Supply Chains through prevention of waste, minimization and optimization of interfaces, standardization and modularization, integrated quality assurance, transparency and visualization concepts, motivation concepts, internationalization, network design, partnering, sustainability and continuous improvement (Kaizen)
- Supply Chain Collaboration in order to reduce bullwhip effects and support logistical integration of Automotive Supply Chain resources
- Controlling of Automotive Supply Chain Systems
- Automotive Supply Chain Event and Risk Management
- Innovative and integrative concepts for Automotive Supply Chain Management Systems

Learning Outcome
After having successfully participated in this lecture students are able to
- define, discuss, assess, evaluate, compare and rank challenges through individualization of customers’ wishes as well as of today’s automotive markets through globalization of demand and supply.
- record, illustrate, discuss, analyse and create the matching optimized structures and processes for supply chain and logistical systems.
- compose carefully balanced logistical automotive supply chain networks that provide customers with Just-In-Sequence solutions in order to meet the high expectations of shareholders and stakeholders.
- formulate and combine integrative strategies, systems and skills of an enterprise as well as those of its supply chain partners in order to be able to flexibly respond to the frequently changing customer requirements in different markets.
- identify, choose and combine concepts of rationalization through scheduling and combining elimination of waste (Lean Management) and organizing Total Quality Management (TQM) and Total Productive Maintenance (TPM).
- professionally set up early warning and benchmarking systems simultaneously in order to meet customer expectations better than competitors and combine and schedule corresponding instruments to realize best practices.

Teaching Methods
- Lectures
- Exercises

Practical Laboratory Work
-

Language
- Teaching: English
- Teaching Material: English

Examination
Written examination
(90 min; dictionary without any comments allowed: English-English, English-German and German-English)

Prerequisites
Basic knowledge of Logistics and Supply Chain Management is recommended.

Recommended Literature
- Mangan, John/ Lalwani, Chandra/ Butcher, Tim/ Javadpour, Roya: Global Logistics and Supply Chain Management, latest ed., Chichester: John Wiley & Sons Ltd.
Description of Modules

- **Coyne, John J./ Langley, C. John/ Novack, Robert A./ Gibson, Brian J.:** Managing Supply Chains: A Logistics Perspective, latest international ed., Canada: South Western, Cengage Learning
- **Bowersox, Donald, J./ Closs, David, J./ Cooper, M. Bixby/ Bowersox, John C.:** Supply Chain Logistics Management; latest international ed., Singapore: McGraw Hill

Further course related literature (books, journals or articles) may be indicated during the course.

<table>
<thead>
<tr>
<th>Workload</th>
<th>L</th>
<th>E</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons (4 SWS):</td>
<td>60</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leadership Application (LSA)

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Responsible</td>
</tr>
</tbody>
</table>

Content
Based on an introduction to fundamental skills and philosophies of leadership, student teams of the master course will manage and supervise student teams of the bachelor course "Fahrzeugtechnik" in their compulsory module "Projekte". The module references numerous basic skills that leaders have to master in managing positions. These skills are practiced throughout this module and the students will be able to assess their personal leadership qualities and develop a plan to enhance their leadership potential. The project results will be documented in a written report and presented by the students within the frame of the Scientific and Interdisciplinary Seminar.

Learning Outcome
The students are able to
- apply methods for personnel management and project management,
- analyse a project status and prepare decisions,
- solve problems related to team work based technical projects.

Teaching Methods
- Introducing lecture
- Guided independent study

Practical Laboratory Work
According to the selected subject

Language
- Teaching: German/English
- Teaching material: German/English

Examination
Assessment of written report;
Assessment of presentation

Prerequisites
Fundamental knowledge according to the selected technical subject and fundamental knowledge in management methods

Recommended Literature
According to the selected subject

Workload
<table>
<thead>
<tr>
<th>Teaching lessons (4 SWS):</th>
<th>10 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided independent study:</td>
<td>50 h</td>
</tr>
<tr>
<td>Report preparation:</td>
<td>40 h</td>
</tr>
<tr>
<td>Preparation of presentation:</td>
<td>20 h</td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
</tr>
</tbody>
</table>
Description of Modules

<table>
<thead>
<tr>
<th>Technology Arts Sciences TH Köln</th>
<th>Component Design, Materials and Manufacture</th>
<th>CDMM</th>
</tr>
</thead>
</table>

Credits
- 4

Designated Degree
- Master of Science Automotive Engineering, 2. Semester

Lecturer
- Prof. Dr.-Ing. Peter Krug

Responsible
- Prof. Dr.-Ing. Peter Krug

Content
- Tracing the manufacturing process of typical automotive components starting with definition of requirements and constraints, designing the component, manipulating materials’ properties during the manufacturing process, quality control.
- The project results will be documented in a written report and presented by the students within the frame of the Scientific and Interdisciplinary Seminar (Scientific Engineering Project).

Learning Outcome
- The students are able to
 - transfer requirements to adequate component design,
 - apply their knowledge about materials and manufacturing to derive manufacturing strategies from component design and requirements in service,
 - prepare a precise production plan by combining materials treatment and manufacturing methods and formulate a bill of material,
 - analyze critical production steps and evolve back up strategies,
 - conduct the scheduled manufacturing process,
 - control the manufacturing process with regard to the required quality and design/process changes,
 - formulate and apply appropriate quality checks to assure operational reliability of the manufactured component,
 - assess critical the manufactured part and the manufacturing process (including planning),
 - analyze, and compare the achieved results with real parts and processes (component based or literature based),
 - summarize the whole process, identify consistencies and inconsistencies, advantages and disadvantages,
 - rework the whole production plan based on the experience they made or derived during the project.

Teaching Methods
- Project based learning with lectures, laboratory work, oral presentation by students
- Presentation of relevant manufacturers
- Excursion to manufacturing companies

Practical Laboratory Work
- Manufacturing process and materials treatment
- Materials’ and components’ testing

Language
- English lecture notes and slides
- English language

Examination
- Colloquium, Oral presentation

Prerequisites
- Materials science, mathematics, mechanical design, requirements and boundary conditions of automotive components in service

Recommended Literature
- J. Lesko; Industrial Design: Materials and Manufacturing Guide
- Miltiadis A. Boboulos: Manufacturing Processes and Materials: Exercises
- R. Creese: Introduction to Manufacturing Processes and Materials
- M. P. Groover; Fundamentals of Modern Manufacturing: Materials, Processes, and Systems

Workload
- Teaching lessons+ laboratory work: 60 h
- Pre- and afterwork: 30 h
- Preparation for examination: 30 h
- In total: 120 h
Virtual Reality

Credits 4

Designated Degree Master of Science Automotive Engineering, 2. Semester

Lecturer Prof. Dr.-Ing. Christoph Ruschitzka

Responsible Prof. Dr.-Ing. Christoph Ruschitzka

Content
- Terms and definitions, history of virtual reality
- Input-devices: dots of freedom, tracking methods, finger-tracking, eye-tracking, optical & mechanical devices
- Output-devices: stereoscopy, visualization hardware (Desktop-VR, HMDs, Hololens, Powerwall, CAVE), haptic devices
- Realtime aspects: latency, collision detection, rendering methods
- Virtual worlds: Human-Computer-Interaction, selection, navigation and manipulation
- Industrial software solutions: engineering software tools, visualization tools, development tools, vr-frameworks

The project results will be documented in a written report and presented by the students within the frame of the Scientific and Interdisciplinary Seminar (Scientific Engineering Project).

Learning Outcome
The students are able to
- use different simulation software toolkits,
- project virtual environments,
- design virtual engineering sessions and visualization studies,
- coordinate collaborative vr-sessions,
- decide between different hard- and software-vr-solutions.

Teaching Methods
- Lectures and practical exercises using different VR-Systems
- Project

Practical Laboratory Work
Use of different VR-Tools for engineering and photorealistic visualization, e.g. ESI VDP, 3DEXcite Delta/Gen, COVISE, VTK;
Use of numerous vr-hardware solutions, e.g. stereoscopic Desktop-VR, Head Mounted Displays (HMD), Powerwalls, tracking systems, flystick

Language
- Teaching: German
- Teaching materials, documentations, software: English/German

Examination
Report & presentation

Prerequisites
Previous knowledge of various CAD-&CAE-Tools (Catia, NX, ABAQUS, HyperWorks, …) and experiences in programming software tools are helpful.

Recommended Literature
Brill: Virtuelle Realität (Informatik im Fokus), Springer Verlag Berlin Heidelberg, 2009
Hausstädtler: Der Einsatz von Virtual Reality in der Praxis, Rhombos Verlag, 2010

Workload

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>E</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons:</td>
<td>64h</td>
<td>8h</td>
<td>48h</td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>24h</td>
<td></td>
<td>24h</td>
</tr>
<tr>
<td>Presentation and report:</td>
<td>32h</td>
<td></td>
<td>32h</td>
</tr>
<tr>
<td>In total:</td>
<td>120h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Description of Modules

Cost-Efficient Product Design (CEPD)

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Alexander Stekolschik</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Alexander Stekolschik</td>
</tr>
</tbody>
</table>

Content

Projects to different topics regarding cost-efficient product design, examples:
- Product Lifecycle, Product types
- Cost management for Product Development
- Target cost oriented Product Development, cost drivers
- Influencing product life cycle costs
- Factors and procedures for Lean Product Design
- Product variant management
- Influence of tools in Product Development
- Time to market

The project results will be documented in a written report and presented by the students within the frame of the Scientific and Interdisciplinary Seminar (Team based Engineering Project).

Learning Outcome

Depending on the detailed project topic students
- can analyze and breakdown product life cycle costs,
- can identify requirements on cost-efficient products,
- can apply methods of target costing to new products,
- are capable of analyzing product properties influencing costs,
- can relate different product related factors to manufacturing costs,
- are capable of defining product structure and product variants.

Teaching Methods

- Workshops
- Project work
- Presentations and written reports

Practical Laboratory Work

Engineering design parametric studies in the computer laboratory, CAD Design

Language

- Teaching: German, English on request
- Teaching material: German, English on request

Examination

Project report and project presentation

Prerequisites

Basic knowledge in Engineering Product Design / Product Development

Recommended Literature

Workload

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>E</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons:</td>
<td>64 h</td>
<td>8 h</td>
<td>48 h</td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>36 h</td>
<td>36 h</td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>20 h</td>
<td>20 h</td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Tom Tiltmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Tom Tiltmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Content
- Classification and different types of DAS
- Technical requirements for DAS
- Implementation of DAS using the Robot Operating System
- Testing methods and evaluation of DAS
- Team based engineering project implementing DAS on a RC model

Learning Outcome
The students are able to
- explain classes and types of driver assistance systems,
- identify technical requirements concerning implementation of driver assistance in modern vehicles,
- understand the operation mode of essential driver assistance systems.

Teaching Methods
- Fundamentals workshops (groups of 2)
- Team based engineering project (groups of 2)
- Oral presentation (15 min.) and written report (10-15 pp.)
- Technical Coaching

Practical Laboratory Work
-

Language
- Teaching: German, English
- Teaching material: German, English

Examination
- Project report and project presentation

Prerequisites
- Knowledge about vehicle concepts and integration

Recommended Literature

Workload
- Guided independent study: 40 h
- Report preparation: 60 h
- Preparation of presentation: 20 h
- In total: 120 h
<table>
<thead>
<tr>
<th>Description of Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
</tr>
<tr>
<td>Arts Sciences</td>
</tr>
<tr>
<td>TH Köln</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mobility Concepts</th>
<th>MC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Michael Frantzen</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Michael Frantzen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Introduction to traffic management</td>
<td></td>
</tr>
<tr>
<td>• Existing alternative mobility concepts</td>
<td></td>
</tr>
<tr>
<td>• Special innovative vehicles and vehicle concepts for new models of traffic</td>
<td></td>
</tr>
<tr>
<td>• Future mobility</td>
<td></td>
</tr>
</tbody>
</table>

The project results will be documented in a written report and presented by the students within the frame of the Scientific and Interdisciplinary Seminar.

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The students are able to</td>
<td></td>
</tr>
<tr>
<td>• sketch, basically design and layout,</td>
<td></td>
</tr>
<tr>
<td>• classify, judge and select new mobility concepts in line with customer wants and market needs.</td>
<td></td>
</tr>
</tbody>
</table>

This will be taught problem based, in a simulated project environment in combination with team work or individual tasks. The students justify, defend, advertise and champion their ideas of new mobility concepts for future demands for a changing world and society, by a detailed presentation of the research and design process outcome, together with a convincing marketing concept.

In the final documentation the above mentioned is documented, illustrated and filed, comparing existing mobility concepts to the proposed concepts in terms of day-by-day usability, sustainability and expected costs, based on the proposed usage.

<table>
<thead>
<tr>
<th>Teaching Methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• lectures with problem based integrated exercises (ProfiL²)</td>
<td></td>
</tr>
<tr>
<td>• presentations from industry and academic partners</td>
<td></td>
</tr>
<tr>
<td>• project work in small teams, homework, practical seminar work</td>
<td></td>
</tr>
<tr>
<td>• practical work, excursions and presentations, milestone reviews</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practical Laboratory Work</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Teaching: German</td>
<td></td>
</tr>
<tr>
<td>• Teaching material and some exercise: English</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examination</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Active participation in seminary work, project work, project documentation, excursions and presentation of project outcome (individually and in teams)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites</th>
<th>none</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Recommended Literature</th>
<th>According to the selected subject</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Workload</th>
<th>L</th>
<th>E</th>
<th>P/Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching lessons:</td>
<td>16 h</td>
<td>16 h</td>
<td></td>
</tr>
<tr>
<td>Pre- and afterwork:</td>
<td>16 h</td>
<td>16 h</td>
<td></td>
</tr>
<tr>
<td>Preparation for examination:</td>
<td>40 h</td>
<td>40 h</td>
<td></td>
</tr>
<tr>
<td>Presentations/reports/papers:</td>
<td>30 h</td>
<td>30 h</td>
<td></td>
</tr>
<tr>
<td>In total:</td>
<td>120 h</td>
<td>16 h</td>
<td>46 h</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 2. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecturer</td>
<td>Prof. Dr.-Ing. Ralf Breede</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Ralf Breede</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Technologies and systems for automated material flow within industrial production environments with an emphasis on automotive production processes. The project results will be documented in a written report and presented by the students within the frame of the Scientific and Interdisciplinary Seminar (Team based Engineering Project).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Learning Outcome | The students are able to
• identify, choose or arrange suitable systems and their configurations,
• layout and programme typical robot applications,
• use a 3D-Simulation tool Delmia V5 Robotics. |
| Teaching Methods | • Introduction
• Project work |
| Practical Laboratory Work | Practical work focused on industrial 6-axis-robot applications and offline programming using Delmia V5 |
| Language | • Teaching: German
• Teaching material: English |
| Examination | Project results / documentation, project presentation, project discussion |
| Prerequisites | Knowledge of production processes and techniques, manufacturing principles and automation, project management, fundamentals of 3D-CAD/CAE-systems |
| Recommended Literature | Literature will be recommended relating to the subject of the project. |
| Workload | Teaching lessons: 40 h
Pre- and afterwork: 60 h
Preparation for examination: 20 h
In total: 120 h |
Description of Modules

<table>
<thead>
<tr>
<th>Credits</th>
<th>No dedicated credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 1. & 2. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>Lecturers of faculty (technical supervision) & N.N. (supervision of English)</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Michael Frantzen, Prof. Dr.-Ing. Peter Krug</td>
</tr>
</tbody>
</table>

Content

In this module, students will work on a vehicle-related subject with scientific background provided by a lecturer of the faculty according to their choice. To assist students in improving their skills in technical English, the work is additionally supervised by native English speakers. The project results will be documented in a written report and presented by the students within the frame of the Scientific and Interdisciplinary Seminar (Scientific Engineering Project).

Learning Outcome

The students are able to
- analyse and evaluate English written scientific papers and theses with scientific-technical content,
- prepare sophisticated scientific reports in English language,
- prepare and to give presentations of scientific results in English language.

Teaching Methods

Guided independent study

Practical Laboratory Work

According to the selected subject

Language

- Teaching: English
- Teaching material: English

Examination

- Assessment of written report
- Assessment of presentation

Prerequisites

Fundamental knowledge according to the selected technical subject and fundamental knowledge in management methods

Recommended Literature

According to the selected subject

Workload

- Guided independent study: \(h \)
- Report preparation: \(h \)
- Preparation of presentation: \(h \)
- In total: \(h \)
Description of Modules

<table>
<thead>
<tr>
<th>Technology</th>
<th></th>
<th>Master Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts Sciences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH Köln</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credits</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Degree</td>
<td>Master of Science Automotive Engineering, 3. Semester</td>
</tr>
<tr>
<td>Lecturer</td>
<td>All lecturers of faculty</td>
</tr>
<tr>
<td>Responsible</td>
<td>Prof. Dr.-Ing. Michael Frantzen</td>
</tr>
</tbody>
</table>

Content

The master thesis is an independently carried out engineering project from the area of the chosen profile within the MSc Automotive Engineering. It includes a written documentation of the results as well as the scientific methods that were applied during the work. It concludes with a verbal presentation and discussion of the project in the colloquium.

Learning Outcome

The students are able to
- apply the acquired theoretical knowledge,
- research and attain further theoretical knowledge that is necessary for the solution of the given problem,
- apply scientific methodology to the given task,
- use an interdisciplinary approach to a problem,
- plan and execute a longer-term project,
- work independently.

Teaching Methods

Independent work by the student, supervised by the lecturer

Practical Laboratory Work

- |

Language

English or German written text (English is recommended)

Examination

- Written documentation of the work
- Oral examination in the colloquium

Prerequisites

Passed all six-credits-modules and one four-credit-module from the cluster “Scientific and Interdisciplinary Seminars” plus proven English skills.

Recommended Literature

Literature will be recommended relating to the according subject.

Workload

Thesis work:	840 h
Colloquium preparation:	90 h
In total:	900 h