

Direkte solare Wasserspaltung _{oder} Wie die Sonne bei 1000 °C grünen Wasserstoff erzeugt

- 1) Grundlagen
 - Grüner Wasserstoff
 - Thermochemische Wasserspaltung
- 2) Astor-Projekt
 - Hintergrund
 - Aktuelle Herausforderungen
- 3) Simulationsmodell
 - Thermochemie Kreisprozess
 - Systemverhalten

4) Zusammenfassung und Ausblick

- 1) Grundlagen
 - Grüner Wasserstoff
 - Thermochemische Wasserspaltung
- 2) Astor-Projekt
 - Hintergrund
 - Aktuelle Herausforderungen
- 3) Simulationsmodell
 - Thermochemie Kreisprozess
 - Systemverhalten
- 4) Zusammenfassung und Ausblick

Quelle: P. Horng, M. Kalis, Wasserstoff – Farbenlehre, Rechtwissenschaftliche und rechtspolitische Kurzstudie, IKEM – Institut für Klimaschutz, Energie und Mobilität e.V., Berlin/Greifswald/Stuttgart

Energieumwandlung und Effizienz

Quelle: A. Brinner, M. Schmidt, S. Schwarz, L. Wagener, U. Zuberbühler, Technologiebericht 4.1 Power-to-gas (Wasserstoff), TF_Energiewende, Zentrum für Sonnenenergie- und Wasserstoff-Forschung, Baden Württemberg, 2018

Energieumwandlung und Effizienz

Quelle: A. Brinner, M. Schmidt, S. Schwarz, L. Wagener, U. Zuberbühler, Technologiebericht 4.1 Power-to-gas (Wasserstoff), TF_Energiewende, Zentrum für Sonnenenergie- und Wasserstoff-Forschung, Baden Württemberg, 2018

Quelle: A. Brinner, M. Schmidt, S. Schwarz, L. Wagener, U. Zuberbühler, Technologiebericht 4.1 Power-to-gas (Wasserstoff), TF_Energiewende, Zentrum für Sonnenenergie- und Wasserstoff-Forschung, Baden Württemberg, 2018

Einsatzbereiche sauberen Wasserstoffs

(Schätzungen, nach Michael Liebreich, 2021)

Alternativlos

Unwirtschaftlich

* Sehr wahrscheinlich in Form von mittels Wasserstoff erzeugten E-Fuels oder Ammoniak.

Quelle: Gregor Hagedorn, Wolf-Peter Schill & amp; Martin Kittel, based on Michael Liebreich/Liebreich Associates, Clean Hydrogen Ladder, Version 4.1, 2021. Concept credit: Adrian Hiel, Energy Cities - https://mobile.twitter.com/wozukunft/status/1436681783920242696, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=110000592

Energiegewinnung durch Sonnenwärmekraftwerke

Energiegewinnung durch Sonnenwärmekraftwerke

Direkte Wasserspaltung – wie funktioniert das?

Ausrichtung vieler Heliostaten (=Spiegel)

Reaktor im Fokus der konzentrierten Sonnenenergie

Quelle: DLR

Solar-thermochemische Spaltung von Wasser auf der Plataforma Solar in Almería (Besitzer: CIEMAT, Spain)

Redox-Prozess Übersicht

Ref: DLR, Wasserstoff als ein Fundament der Energiewende, Teil 1: Technologien und Perspektiven für eine nachhaltige und ökonomische Wasserstoffversorgung

1) Grundlagen

- Grüner Wasserstoff
- Thermochemische Wasserspaltung

2) Astor-Projekt

- Hintergrund
- Aktuelle Herausforderungen
- 3) Simulationsmodell
 - Thermochemie Kreisprozess
 - Systemverhalten

4) Zusammenfassung und Ausblick

Historie der Technologie am DLR

• ASTOR (2017 - 2020), ASTOR_ST (2020 - 2023)

<u>Automatisierung Solar-Thermochemischer Kreisprozesse</u> zur <u>R</u>eduzierung von Wasserstoffgestehungskosten auf einem <u>Solart</u>urm

Forschungsgruppe an der RFH:

- 1-2 Professoren
- 1 Promotion (Dr.-Ing.)
- 5 WHK / SHK / WiMi
- >30 Bachelor- und Masterarbeiten
- >30 Forschungsprojektarbeiten

Partner

- Deutsches Zentrum f
 ür Luft- und Raumfahrt e. V. (DLR)
- Stausberg & Vosding GmbH
- Rheinische Fachhochschule Köln gGmbH

Förderung

Europäischer Fond f
ür regionale Entwicklung

Growth ent

EUROPEAN UNION Investing in our Future European Regional Development Fund

Astor-Reaktor

Astor-Reaktor, Synlight-Labor und Solarturm in Jülich

250 kW Prototyp-Reaktor

- Automatisierung, Steuerung, Regelung
- Optimierung von Material, Struktur, Betriebsstrategie
- Software-Modell von Reaktor und Prozess

Praktischer Betrieb im Feld

Reaktorumbau

- Umzug auf Solarturm
- Prozesstechnik/Automatisierung
- Variation der Porosität des Absorbermaterials

- Einbindung der Heliostatfeldsteuerung
 - Ansteuerung einzelner Spiegel f
 ür gleichm
 äßige Temperaturverteilung bzw. Gruppen von Spiegeln
 - Solarleistung kann nur in Stufen bereitgestellt werden

- Einbinden einer DNI-Prognose "Wettervorhersage"
 - Genauere Kurz-Zeit-Prognose der Verschattung, z.B. f
 ür n
 ächste 10 Minuten
 - "Achtung schneller Wolkendurchzug", was tun?
 - Mittelfristige Vorhersagen "In der nächsten Stunde regnet es"

Automation im Feld

- Automatisierung und Steuerung
 - Ziel: Steuerung f
 ür 3 Reaktoren hier: 1 physischer Reaktor + 2 virtuelle Reaktoren
 - Simulation der beiden virtuellen Reaktoren auf Echtzeit-System
 → Hardware-in-the-Loop

- Regelungstechnik
 - Verhalten des Reaktors abhängig vom Betriebspunkt
 - (Temperaturniveau, Massenflüsse)
 - Nur indirekt messbare Regelgröße = Temperatur auf Oberfläche, gemessen wird Temperatur an der Absorberrückseite
 - Regler wird mindestens
 Gain-Scheduling beinhalten,
 alternativ mit Modellprädiktion

- Welches ist die optimale Betriebsstrategie?
 - Was bedeutet eigentlich "optimal"?
 - Max. H₂ pro insg. eingesetzte Energie
 - Max. H₂ pro Zeit
 - Max. H₂ pro gleichbleibende Solareinstrahlung und Spiegel-Fläche
 - Max. H₂ pro Solareinstrahlung am Tag (inkl. An- und Abfahrverhalten)
 - Theoretische Solar-to-fuel-Effizienz liegt bei 40-50%
 - Praktisch sind bis jetzt 5% realisiert worden

Potential ist höher als bei Photovoltaik + Elektrolyse (bis 20%)

Zusammenfassung

- Grüner Wasserstoff wird zur Dekarbonisierung benötigt
- Photovoltaik + Elektrolyse sind prinzipiell dafür geeignet
- Thermochemische Wasserspaltung hat ein etwa doppelt so hohes Potential bzw. theoretische Effizienz
- Das Potential ist noch nicht geborgen \rightarrow mehr Forschung nötig!

Ausblick

- Verbesserung Anlagenaufbau (Modell, Material, Geometrie)
- Effiziente Betriebsstrategie (Optimierung, Wetter, Skalierung)

- 1) Grundlagen
 - Grüner Wasserstoff
 - Thermochemische Wasserspaltung
- 2) Astor-Projekt
 - Hintergrund
 - Aktuelle Herausforderungen
- 3) Simulationsmodell
 - Thermochemie Kreisprozess
 - Systemverhalten

4) Zusammenfassung und Ausblick

Simulationsmodell

Nicht-stöchiometrischer Koeffizient $\delta(T)$ (vom $CeO_{2-\delta}$)

- Gleichgewichtskurven für $p_{O_2} = 10^{-5}$ bar in Red.
- δ_{max} entspricht Potential der H₂-Erzeugung
- Isothermer Betrieb nur bei hohen Temp. sinnvoll
- Große Temp-Swings ergeben hohe δ_{max} -Werte
- Größere Temp-Swings benötigen längere Zykluszeiten

3h Temperatur-Swing-Zyklus mit $\Delta \vartheta = 700^{\circ}C$

- 2 h Reduktion bei $\vartheta_{red} = 1500 \ ^{\circ}C$ und 100 kg/h Stickstoff
- 1 h Oxidation bei $\vartheta_{ox} = 800 \ ^{\circ}C$ und 15 kg/h Wasserdampf
- 27 g H₂ werden pro Zyklus erzeugt
- Rückseitentemperatur ändert sich nur langsam
- Der meiste Wasserstoff wird in den ersten 10 min der Oxidation erzeugt

- Prozesse sind z.T. nichtlinear (chem. Reaktion, Fluss durch poröses Material)
- Prozesse haben z.T. schnelle Dynamik (Ventile, chem. Reaktion), andere langsam (Temperaturänderung)
- "Alles hängt von allem ab"

Absorber aus 109 Blöcken

Temperaturabhängige Eigenschaften 20°C 800 °C 1400 °C

20°C

Source: DLR

Modellierung der Strahlungsverteilung

- Solares Flussdichteprofil
- Materialeigenschaften
- Optische Eigenschaften
- Reflektierte Solarstrahlung
- Wärmestrahlung
- Geometrische Verhältnisse

Absorber-Geometrie (7-Segment-Modell)

Absorber aus 109 "Platten" \rightarrow Modell mit 7 "Ringen" \rightarrow mit je 9 radialen Schichten

Grobe Auflösung des Absorbers mit 2 radialen Elementen

Feine Auflösung des Absorbers mit 32 radialen Elementen

- "Ungenaue" Ergebnisse
- geringer Rechenaufwand

- Akkurate Ergebnisse
- hoher Rechenaufwand

Quelle: DLR

Quelle: DLR

Modellvalidierung

Simulation der Bestrahlungsexperimente im Sonnenlabor Synlight

Modellvalidierung

Modellvalidierung

Validierung der Wasserstoffproduktion (Massenspektrometer)

Optimierung der Betriebsstrategie

<u>Ausgangszustand</u>

- Annahme: Volle Solarleistung
- Maximale Effizienz bei 1,03 %
- Temperatur Red.: Maximal (1400 °C)
- Temperatur Ox.: "Niedrig" (886 °C)
- Massenflussraten: An oberer Grenze

Optimiert auf maximale Gesamt-Effizienz der Anlage

	Optima	le Betriel	Schlüsselkennzahlen						
ϑ_{Red}	ϑ_{Ox}	t _{Red}	t_{Ox}	\dot{m}_{N_2}	\dot{m}_{H_2O}	$\eta_{Reaktor}$	<i>H</i> ₂	\bar{x}_{H_2}	
1400	886,3	443,7	435,9 🤇	250	25	1,03	25,78	1,87	
°C	°C	S.	S.	kg/h	kg/h	%	g/h	%	
	↓ Erhöhung der Massenflussraten!								

Optimierung der Betriebsstrategie

Erhöhte Massenflussraten

- Annahme: Volle Solarleistung
- Maximale Effizienz bei 1,20 %
- Temperatur Red.: Maximal (1400 °C)
- Temperatur Ox.: "Niedrig" (893 °C)
- Massenflussraten: "gestiegen"

Optimiert auf maximale Gesamt-Effizienz der Anlage

	Optima	Schlüsselkennzahlen						
ϑ_{Red}	ϑ_{Ox}	t _{Red}	t_{Ox}	\dot{m}_{N_2}	\dot{m}_{H_2O}	$\eta_{Reaktor}$	H_2	\bar{x}_{H_2}
1400	892,7	278,5	169,0 🤇	231,3	105,8	1,20	42,48	0,95
°C	°C	S.	S.	kg/h	kg/h	%	g/h	%
₽ Red. Tempe	↓ Red. Temperatur maximal!			↓ Optimum gefunde				

Optimierung der Betriebsstrategie

Erhöhte Reduktionstemperatur

- Annahme: Volle Solarleistung
- Maximale Effizienz bei 2,13 %
- Temperatur Red.: Maximal (1500 °C)
- Temperatur Ox.: "gestiegen" (1050 °C)
- Massenflussraten: "gestiegen"

Optimiert auf maximale Gesamt-Effizienz der Anlage

Optimale Betriebsparameter						Schlüsselkennzahlen		
ϑ_{Red}	ϑ_{Ox}	t _{Red}	t_{Ox}	\dot{m}_{N_2}	\dot{m}_{H_2O}	$\eta_{Reaktor}$	H_2	\bar{x}_{H_2}
1500	1050,4	237,6	150,9	163,9	130,4	2,13	87,20	1.56
°C	°C	S.	S.	kg/h	kg/h	%	g/h	%

Wenn möglich: Weitere Erhöhung der Reduktionstemperatur!

Betrachtung des Energiefluss

- Sekundärkonzentrator
- Kleinere Reaktor-Apertur/ Verbessertes Reaktordesign
- Optisch selektive
 Fensterbeschichtung
- Fensterschließmechanismus
- Verbesserte Absorber Materialstruktur
- Auslegung des Wärmerückgewinnungssystems
- Optimiertes Heliostatdesign

Sensitivitätsanalyse

- Sekundärkonzentrator
- Kleinere Reaktor-Apertur/ Verbessertes Reaktordesign
- Optisch selektive
 Fensterbeschichtung
- Fensterschlie
 ßmechanismus
- Verbesserte Absorber Materialstruktur
- Auslegung des Wärmerückgewinnungssystems
- Optimiertes Heliostatdesign

- Sekundärkonzentrator
- Kleinere Reaktor-Apertur/ Verbessertes Reaktordesign
- Optisch selektive Fensterbeschichtung
- Fensterschließmechanismus
- Verbesserte Absorber Materialstruktur
- Auslegung des Wärmerückgewinnungssystems
- Optimiertes Heliostatdesign

Quelle: D. Marxer, P. Furler, M. Takacs, A. Steinfeld: Solar thermochemical splitting of CO₂ into separate streams of CO and O₂ with high selectivity, stability, conversion, and efficiency, Energy & Environmental Science, 2017

- Sekundärkonzentrator
- Kleinere Reaktor-Apertur/ Verbessertes Reaktordesign
- Optisch selektive Fensterbeschichtung
- Fensterschließmechanismus
- Verbesserte Absorber Materialstruktur
- Auslegung des Wärmerückgewinnungssystems
- Optimiertes Heliostatdesign

- Sekundärkonzentrator
- Kleinere Reaktor-Apertur/ Verbessertes Reaktordesign
- Optisch selektive Fensterbeschichtung
- Fensterschließmechanismus
- Verbesserte Absorber Materialstruktur
- Auslegung des Wärmerückgewinnungssystems
- Optimiertes Heliostatdesign

- Sekundärkonzentrator
- Kleinere Reaktor-Apertur/ Verbessertes Reaktordesign
- Optisch selektive Fensterbeschichtung
- Fensterschließmechanismus
- Verbesserte Absorber Materialstruktur
- Auslegung des Wärmerückgewinnungssystems
- Optimiertes Heliostatdesign

Quelle: M. Joes, S. Ackermann, D. Theiler, P. Furler, A. Steinfeld: Additive-Manufactured Ordered Porous Structures Made of Ceria for Concentrating Solar Applications, Energy Technology, Volume 7, Issue 9, 2019

- 1) Grundlagen
 - Grüner Wasserstoff
 - Thermochemische Wasserspaltung
- 2) Astor-Projekt
 - Hintergrund
 - Aktuelle Herausforderungen
- 3) Simulationsmodell
 - Thermochemie Kreisprozess
 - Systemverhalten

4) Zusammenfassung und Ausblick

Zusammenfassung

- Grüne Wasserstoffherstellung aus Solarenergie bei 1000 °C
- Technische Herausforderungen im realen Betrieb im Feld
- Erstellung eines akkuraten Simulationsmodells
- Mögliche Effizienzsteigerungen: Baulich + Optimierung Betrieb

Ausblick

- Automatisierter Anlagenbetrieb auf Solarturm Jülich Mai/Juni 2023
- Verwertung der Ergebnisse zur Konzipierung von neuem Reaktor mit Effizienz > 5 % im 250 kW Maßstab

Quelle: DL

Danke für Ihre Aufmerksamkeit!

Jörg Lampe Joerg.Lampe@RFH-Koeln.de

- Menz, S., Lampe, J., Weiler, P., Pahl, A., Tröltzsch, U., Fend, T., Seeger, T. Real time executable model for dynamic heat flow analysis of a solar hydrogen reactor. *tm - Technisches Messen*, 87/5: 360 – 371, 2020.
- 2. Lampe, J., Menz, S., Akinci, K., Böhm, K., Seeger, T., Fend, T., Optimizing the operational strategy of a solar-driven reactor for thermochemical hydrogen production, *International Journal of Hydrogen Energy*, no. 47, pp. 14453–14468, 2022.
- 3. Menz, S., Lampe, J., Krause, J., Seeger, T., Fend, T., Holistic energy flow analysis of a solar driven thermo-chemical reactor set-up for sustainable hydrogen production, *Renewable Energy*, no. 189, pp. 1358–1374, 2022.
- Thanda, V.K., Fend, T., Laaber, D., Lidor, A., von Storch, H., Säck, J.P., Hertel, J. Lampe, J., Menz, S., Piesche, G., Berger, S., Lorentzou, S., Gonzales, A. Vidal, A., Roeb, M., Sattler, C. Experimental Investigation of the Applicability of a 250 kW Ceria Receiver/Reactor for Solar Thermochemical Hydrogen Generation. *Renewable Energy*, 198: 389 398, 2022.

Backup

Gestehungskosten

synthetische Kraftstoffe in Euro

Wie sind die wirtschaftlichen Aussichten?

Hydrosol Technologie:

6–12 €/kg Wasserstoff 15-30 ct/kWh

1,5 € /l synth. Kraftstoff 15ct/kWh